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Preface 

The report summarizes the findings from the preliminary finite element study. Its 
aim is to identify clearly the parameters and their ranges that affect the overall 
buckling of stainless steel members. The calculations were carried out using 
plugin for Abaqus that is also described herein. The scope of presented 
calculations is beam and column buckling of thin-walled members, particularly 
flexural and torsional-flexural stability of columns and lateral-torsional buckling 
of beams. Local and distortional stability is not addressed in this part of WP2 
since it was studied independently by UPC. 

Additional studies were carried out in this task to verify the suitability of modified 
Ayrton-Perry strength curve approximation model that takes into account the 
material gradual yielding in form of tangent modulus. 

The effect of bending residual stresses was also investigated in order to prepare 
parameters for the future full parametric study with complex numerical models. 

Espoo 12.7.2012 

Authors 
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Abbreviations 

AS/NZS Australian Standard/New Zealand Standard 

CRF Circle-to-Rectangle Forming 

EN European Standards 

FB Flexural buckling 

FE, FEA Finite Element, Finite Element Analysis 

FEM Finite Element Method 

GMNIA Geometrically and Materially Non-linear Analysis with 
Imperfections 

LEA (LBA) Linear Eigenvalue (Buckling) Analysis 

LTB Lateral-torsional buckling 

NLR Nonlinear regression analysis 

RHS Rectangular Hollow Section 

Riks Arc-length method used e.g. in Abaqus FE solver 

SEI/ASCE Structural Engineering Institute/American Society of Civil 
Engineers 

SHS Square Hollow Section 

TB, TFB Torsional buckling, Torsional-flexural buckling 

6 (179)



 

RESEARCH REPORT VTT-R-04891-12 

5 (54) 
 

 

 

1 Introduction 

The report discusses the specific phenomena of global stability of members from 
metallic non-linear materials with a special focus on ferritic stainless steel. The 
numerical study presented in this report supports the theoretical assumptions for 
the buckling behaviour of thin-walled members with different material properties 
[1], especially hardening parameters. Flexural, torsional-flexural and lateral-
torsional buckling modes are studied on hollow sections, lipped channels and I-
sections. The finite element models are calculated using the Abaqus plug-in for 
virtual testing of thin-walled structural members, developed in VTT. 

The scope of the report is defined in the work package description of WP2: 
Structural performance of steel members, Task 2.2: Preliminary FEM study 
(preliminary parametric study on overall buckling behaviour) and Task 2.4: 
Parametric study and recommendations (validation of design approaches). The 
other parts of Task 2.2 are covered in the Profiler – Abauqs plug-in: User manual 
[2] (Abaqus plug-in development) and WP2 Model calibration test report [3] 
(classification of mechanical properties of base materials). 
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2 Material models 

The stress-strain relationship in Eqs. (1) to (3) used in the presented study is based 
on Rasmussen’s modification of the Mirambell-Real model [4, 5]. This is also 
included in the existing design rules, e.g. in Annex C of Eurocode 3, Part 1-4 [6]. 

02
0 0,2

02 02
02 02

02 02

0,002
n
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pu
u

for
E

for
E

σ σ σ σ
σ
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σ σ σ σε ε σ σ
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 + ≤    = 
  − −

+ + >  −  
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where E0 is the initial modulus of elasticity, σ0.2 and σu stands for the 0.2% offset 
yield strength and ultimate strength respectively, n and m are the nonlinear 
parameters of each segment, and the tangent modulus at 0.2% stress E0.2 can be 
calculated using the following equation: 

( )
0

02
0 021 0.002

EE
n E σ

=
+

 (2) 

The total strain corresponding to 0.2% proof stress ε0.2 and the plastic strain 
difference εpu of the second stage are described here: 

02
02

0

0.002
E

σε = +  and 02
0,2

02

u
pu u E

σ σε ε ε −
= − −  (3) 

A group of materials with different 0.2% proof stress, ultimate strength, initial 
modulus of elasticity and non-linear parameter n was studied. The material stress-
strain behaviour was described according to Rasmussen’s modification of the 
model, where the parameter of non-linearity of the second stage m is presented by 
Eq. (4) 

0,21 3.5
u

m
σ
σ

= +  (4) 

and the ultimate strain by Eq. (5). 

021u
u

σε
σ

= −  (5) 

Material was then transformed to true stress and plastic logarithmic strain 
according to the Eq. (6). 

( )1true nomnom
σ σ ε= +  

( )ln 1 true
true nom E

σε ε= + −  
(6) 
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Table 1. Basic material models. 

 E0 σ02 n σ u m εu 
A: Austenitic 200 GPa 300 MPa 5 600 MPa 2.75 0.50 
B: Duplex 200 GPa 500 MPa 5 700 MPa 3.50 0.29 
C: Ferritic 1 200 GPa 300 MPa 10 600 MPa 2.75 0.50 
D: Ferritic 2 200 GPa 300 MPa 10 420 MPa 3.50 0.29 
E: Carbon 200 GPa 355 MPa 25 500 MPa 3.49 0.29 
 

Table 2. Additional material models (for preliminary parametric study). 

 E0 σ02 n σ u m εu 
F: n = 25 200 GPa 300 MPa 25 600 MPa 2.75 0.50 
G: fy = 400 MPa 200 GPa 400 MPa 10 560 MPa 3.50 0.29 
H: fy = 500 MPa 200 GPa 500 MPa 10 700 MPa 3.50 0.29 
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3 Cross-sections 

For each buckling mode analysis we selected a different cross-section to 
demonstrate that the studied phenomena are common to hollow sections as well as 
open double-symmetrical and single-symmetrical cross-sectional shapes. 

a) square hollow section (SHS) with centre-to-centre 
side length 72 mm, wall thickness 5 mm and no 
corners 

The doubly symmetric cross-section was used for the 
flexural buckling tests (FB) because the radius of 
gyration is the same in all directions and the member 
global failure is always in flexural buckling. 
Additionally, the same cross-section with thicknesses 3.0 
mm and 1.0 mm was used to study the effect of changing 
A/W ratio. 

 
Figure 1. SHS section 
for FB tests. 

b) lipped channel with centre-to-centre side length 72 
mm, lip end-to-centre length 18 mm, wall thickness 5 
mm and no corners 

The open section was forced to fail in flexural-torsional 
buckling (TFB) by fixing the end-supports in rotation in 
the vertical direction.  

Figure 2. Lipped 
channel for TFB tests. 

c) I section 100 x 200 mm with flange thickness 8.5 mm 
and web thickness 5.6 mm 

Even though the cross-sectional parameters are the 
common dimensions of IPE 200 profile, this cross-
section doesn’t represent any hot-rolled member because 
no residual stresses were used in FE calculation. Unlike 
the previous cases, the members with I section were 
loaded with end-moments to obtain lateral-torsional 
buckling (LTB) failure. 

 
 

Figure 3. I-section for 
LTB tests. 
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4 Simplified numerical model 

In order to evaluate the effect of nonlinear stress-strain behaviour on member 
buckling strength, multiple series of numerical models have been created with 
variable length and material parameters. The suitability of linear and quadratic 
shell elements was tested, as well as different shell thicknesses. Because element 
types and thicknesses did not significantly affect the calculation results, we 
selected nine-node shells with reduced integration (S9R5), and higher material 
thickness to limit the effect of local buckling in shorter members. 

4.1 Loading and supports 

Pinned-pinned supports and concentric axial loading were applied in the flexural 
buckling (FB) study. The single-symmetric members were forced to fail in 
torsional-flexural buckling (TFB), fixing both ends in y axis bending, torsion and 
warping. In the case of lateral-torsional buckling (LTB), members were simply 
supported and loaded with end-moments (see Figure 4). Both ends were 
additionally restrained against torsion and warping. These conditions were also 
considered in calculation of nondimensional slenderness. 

 
Figure 4. Loading and supports in FB tests (left), TFB tests (middle) and LTB 
tests (right). 

4.2 Imperfection modelling and elastic buckling analysis 

The distribution of initial imperfections was obtained from linear eigenvalue 
analysis as the first overall buckling shape with positive critical load. In order to 
suppress local and distortional buckling modes in shorter members, each cross-
section was stiffened with membrane elements in eigenvalue analysis. This 
method was verified successfully in lateral-torsional buckling [7], and our 
numerical results also showed a good agreement with analytically predicted 
critical loads for flexural and torsional-flexural cases. The selection of 
imperfection amplitude usually corresponds to the mean geometrical 
imperfections and ranges from L/1000 to L/2000. For instance, European buckling 
curves were defined with imperfections L/1000. Since our numerical models 
excluded the effect of residual stresses and strains in the material, a higher 
amplitude of initial imperfection (L/750) was chosen to compensate for these 
effects. It should be noted that L/750 corresponds to the fabrication tolerances in 
EN 1090-2 [8], where the additional deformation caused by residual stresses is 
expected. The lengths of tested members were selected as an approximate match 
for a nondimensional slenderness sequence of 0.125, 0.25, 0.5, 0.7, 1.0, 1.4, 2.0, 
2.8 and 4.0. In a few cases it was impossible to obtain ultimate loads for the 
shortest columns and longest beams due to the geometrical and material limits. 
Some of the calculations were also affected by local and distortional buckling and 
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were excluded from the further study. All the strength curves, therefore, are based 
on seven to nine calculated points. 

4.3 Model simplification 

As it was not the goal of our numerical study to simulate any particular member 
behaviour, several simplifications were used to increase computational efficiency 
and to highlight the differences in specific material parameters clearly, without 
additional disturbing effects. Each of the following assumptions was carefully 
studied before application: 

- Enhanced material properties in corners were included in the average values of 
the entire cross-section. This method is also accepted by the Eurocode [9]. 

- Residual stresses from cold-forming were not used due to their small effect on 
the member behaviour, as concluded by Gardner and Cruise [10]. 

- Residual stresses from fabrication and press-braking were also assumed to be 
included in the material model and initial imperfections. 

- An isotropic material model was used with nonlinear hardening. This provides 
sufficient accuracy compared to other possible isotropic and anisotropic 
models, according to Rasmussen et al. [11]. 

- Rounded corners were ignored, giving greater flexibility for reasonable aspect 
ratios of flat part shell elements. 
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5 Advanced numerical model 

To compare simplified numerical model with the expected behaviour of real 
structural members we created advanced numerical models with real corners 
(centre radius equal to the sheet thickness) and enhanced material properties in the 
corner area [12, 13]. Enhanced material properties in flats (f) and corners (c) were 
calculated from the virgin material (v) according to the equations in Table 3. 

Table 3. Enhanced material properties. 

 Cold-rolled (CRF) hollow section 
(flexural buckling test) 

Press-braked lipped channel 
(flexural-torsional buckling test) 

 
 

(corner extension 2t) 
 

(only corners) 

02, fσ  
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02,

02,
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σ
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[13] 

 

The residual stresses and corresponding plastic strains were also inserted in the 
numerical model as its initial conditions according the assumed fabrication 
process (CRF or press-braking). Their calculation is in the Table 4. 

Table 4. Residual stress models. 

 Cold-rolled (CRF) hollow section 
(flexural buckling test) 

Press-braked lipped channel 
(flexural-torsional buckling test) 

 

  
corners 0.37 σ02,v [10] 0.36 σ02,v [10] 

flats 0.63 σ02,v [10] 0.15 σ02,v [10] 
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6 Strength curve approximation models 

6.1 Existing models 

The well-established Ayrton-Perry formula for buckling of columns with initial 
imperfections in Eq. (7) has been used in calculations of carbon steel members for 
many years, also being adapted for stainless steel in European and Australian 
standards [14, 15]. However, the calculation has a physical meaning only for 
compressed members from linear elastic-plastic material with sinusoidal initial 
shape, and therefore its parameters, – imperfection factor α and the initial 
slenderness λ0 – are usually selected to match the experimental results. Many 
analogies of more complex phenomena to this model (such as lateral-torsional 
buckling, instability of tubes) have been developed later on. 

2 2

1χ
φ φ λ

=
+ −

, where ( )20.5 1φ η λ= + +  and ( )0η α λ λ= −  (7) 

In such models, the limiting factor for the plastic collapse is usually the yield 
strength, which is convenient for materials with a sharp yield point. As Holmquist 
and Nadai noted as long ago as 1939, in materials without a well-defined yield 
point the yield strength becomes an arbitrary value, and must be substituted by a 
different approach, for example by using reduced modulus (or so called “double 
modulus”) theory. Holmquist and Nadai also laid the basis for the well-known 
Ramberg-Osgood constitutive model by establishing the nonlinear factor n that 
defines the relation between stress and strain beyond the proportionality limit. An 
alternative to reduced modulus theory could be use of the tangent modulus of 
material directly, as proposed by Engesser; this is the current design procedure in 
SEI/ASCE specification for stainless steels and in the Australian and New 
Zealand standard. Shanley showed that the true resistance is somewhere between 
these models, meaning that the tangent modulus provides a lower bound and 
reduced modulus gives higher resistances. 

It should be noted that both theories were established for geometrically perfect 
columns (see Figure 5), and were in most cases replaced by the Ayrton-Perry 
formula that takes into account initial imperfections but leaves out the influence of 
material nonlinearity. 
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Figure 5. The development of theories for assessment of member buckling 
strength that formed a background of today’s design codes for stainless steel. 

The problem of implementing material nonlinearity in evaluation of geometrically 
imperfect columns was addressed in 1997 by Rasmussen and Rondal [16], who 
modified the imperfection factor formula (Eq. (8)) and parameters using Eqs. (9) 
to (12) as functions of the nonlinear n factor and with parameter e as the ratio of 
σ0.2 and E0. 

The curves were fitted to match finite element calculations of compressed 
rectangular hollow sections with initial geometrical imperfections of L/1500. 
Enhanced material properties and residual stresses were included in their 
numerical calculations in the material model in the same way as in the presented 
study. 

( )1 0 0βη α λ λ λ = − − ≥   (8) 
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The calculation published by Rasmussen and Rondal describes accurately the 
buckling behaviour of concentrically loaded members not subjected to torsional or 
torsional-flexural buckling. A set of recommended parameters for 8 basic stainless 
steel grades is given in the AS/NZS standard for the designer’s convenience. The 
example comparison in Fig. 6 shows the close agreement of Rasmussen and 
Rondal’s model with the flexural buckling behaviour of rectangular hollow 
sections. However, the model would require recalibrating constants for torsional 
or lateral-torsional buckling strength prediction. 
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Figure 6. Example of comparison with existing theories in flexural buckling. 
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6.2 Transformed Ayrton-Perry model 

We propose using a similar approach to the SEI/ASCE and AS/NZS standards 
[15, 18], where the buckling curve is calculated with tangent modulus Et of the 
Ramberg-Osgood stress-strain relationship in Eq. (13) instead of initial elastic 
modulus E0. 

( )
0 02

1
02 0 020,002

t n
EdfE

d nE
σ

ε σ σ σ −= =
+

 (13) 

Although these design codes are based on transformed Euler’s law without initial 
imperfections, it is possible to extend this idea to the Ayrton-Perry curve. As a 
result we obtain a simple recursive model in Eqs. (14) to (16), which can be 
solved numerically. 

2 *2

1χ
φ φ λ

=
+ −

, where ( )*20.5 1φ η λ= + +  and ( )* *
0η α λ λ= −  (14) 

* 10

02

1 0.002 nEnλ λ χ
σ

−= ⋅ +  (15) 

with the following limitation of the transformed initial slenderness λ*
0: 

*
0 1.0λ < , and therefore 0

0 0.2

1
1 0.002n E

λ
σ

<
+

 (16) 

Such equations are easy to solve using the personal computer with spreadsheet 
editor or any other technical computing environment. In our case, the iteration 
script was developed in the Python programming language and integrated directly 
in Abaqus finite element simulations. 

The proposed model excludes several important factors of nonlinear material 
behaviour: it neglects the nonlinear distribution of stresses and strains over the 
member cross-section; the initial imperfection shape is assumed to be sinusoidal; 
and the material stiffness reduction is constant in the entire member. The model is 
therefore unable to produce reduction factors directly without adjustment of its 
parameters to fit the real observed buckling behaviour. However, the possibility of 
including the Ramberg-Osgood nonlinear factor n in strength curves offers a 
significant advantage compared to the standard Ayrton-Perry model, while the 
model can still be used for TFB and LTB analyses if properly calibrated 
parameters are provided. 
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7 Flexural buckling tests 

Square hollow sections with the centre-line dimension of a = 72 mm, wall 
thickness t = 5 mm and sharp corners were tested in member buckling test 
experimental setup. The length of the member was calculated to achieve relative 
slenderness from 0.0625 to 2.8 according to the following Eq. (17), where the 
radius of gyration i = 29.4 mm in all directions and 02σ=yf . 

0

y

EL i
f

λ π= ⋅ ⋅  (17) 

Table 5. Member lengths (mm). 

Case 
Non-

dimensional 
slenderness 

A, C, D, F B, H E G 
Mesh 
size 

(mm) 
1 0.125 298.2 231.0 274.1 129.1 5 
2 0.25 596.4 462.0 548.3 258.3 10 
3 0.5 1192.9 924.0 1096.6 516.5 15 

3B 0.7 1687.0 1306.7 1550.8 1033.1 15 
4 1 2385.7 1848.0 2193.2 1460.9 20 

4B 1.4 3373.9 2613.4 3101.6 2066.1 20 
5 2 4771.5 3696.0 4386.3 2921.9 25 

5B 2.8 6747.8 5226.8 6203.1 4132.2 25 
 

The critical force was compared with the theoretical Euler’s critical force for 
pinned-pinned column (Eq. (1)), where the second moment of area I = 1245660 
mm4 in all directions. 

2
0

, 2cr E
E IN
L

π
=

 
(18) 

Table 6. Critical loads (kN) from LEA. 

Case A, C, D, F B,H E G 
1 20261 n/a n/a n/a 
2 6621 10312 7695 4972 
3 1661 2697 1950 2207 

3B 847 1393 998.5 1124 
4 427.7 708.3 505.4 562.3 

4B 215 357.2 254.1 282.4 
5 107.7 179.3 127.5 141.5 

5B 53.95 89.83 63.83 70.84 
 

The load distribution was then inserted into the FEM model and amplified to 
maximum imperfection 7500 Le = . 
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Table 7. Ultimate loads (kN) from GMNIA. 

Case A B C D E F G H 
1 568.9 n/a 561.8 493.8 n/a 548.6 n/a n/a 
2 457.3 764.1 440.1 430.1 499.8 417.8 589.8 752.56 
3 352.7 645 354.7 352.1 441.9 370.3 490.98 631.6 

3B 286 533.48 305.4 305.6 401.7 333.6 425.91 549 
4 217.1 398.2 246.7 247.1 331.4 274.2 341.51 439.5 

4B 146.7 264 165.4 165.5 212.5 173.2 225.37 288 
5 86.4 151.8 93.49 93.52 115.8 95.02 125.64 158.6 

5B 46.54 80.83 49.07 49.08 59.53 49.75 65.63 82.85 
 

The reduction factor for member buckling comes from the calculated ultimate 
load and characteristic elastic cross-sectional resistance (Eq. (19)), where the 
cross-sectional area A = 1440 mm2. 

ult

y

N
f A

χ =  (19) 

Table 8. Reduction factors. 

Case A B C D E F G H 
1 1.317 n/a 1.300 1.143 n/a 1.270 n/a n/a 
2 1.059 1.061 1.019 0.996 0.978 0.967 1.024 1.045 
3 0.816 0.896 0.821 0.815 0.864 0.857 0.852 0.877 

3B 0.662 0.741 0.707 0.707 0.786 0.772 0.739 0.763 
4 0.503 0.553 0.571 0.572 0.648 0.635 0.593 0.610 

4B 0.340 0.367 0.383 0.383 0.416 0.401 0.391 0.400 
5 0.200 0.211 0.216 0.216 0.227 0.220 0.218 0.220 

5B 0.108 0.112 0.114 0.114 0.116 0.115 0.114 0.115 
 

  
Figure 7. Local and global failure of SHS members. 
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8 Torsional-flexural buckling tests 

Lipped channels centre-line dimension a = 72 mm, wall thickness t = 5 mm, lips 
length c = 18 mm and sharp corners were tested in member buckling test 
experimental setup. The length of the member was from 150 to 6788 mm. 

The theoretical torsional-flexural buckling force was calculated as Eq. (20) 

( )
( )

2
2, , , ,

, 0 02
, , ,0 0

1 1 4
2 1

cr FB cr T cr T cr T
cr TF

cr FB cr FB cr FB

N N N N
N y i

N N Ny i

   = + − − +    −      

 (20) 

where the distance from centre of gravity to the shear centre is 0 70.86y mm= , 
polar radius of gyration with respect to the shear centre is 0 82.45i mm= , critical 
forces from flexural and torsional buckling are in Eqs. (21) and (22): 

2
0

, 2cr EB
E IN
L

π
=  (21) 

( )

2
0

, 22
0

1
0.5

w
cr T t

E IN GI
i L

π 
= + 

  
 (22) 

(fixed in torsion and warping in both ends) torsional constant is 10500 mm4 and 
warping constant is 1567640000 mm6. The respective slenderness was calculated 
from the theoretical buckling load: 

Table 9. Non-dimensional slenderness. 

Case Member 
length (mm) A, C, D, F B, H E G Mesh size 

(mm) 
0 150 0.0873 0.1127 0.0949 0.1008 5 
1 300 0.174 0.225 0.190 0.201 5 
2 600 0.347 0.448 0.377 0.401 10 
3 1200 0.681 0.879 0.741 0.786 15 

3B 1697 0.941 1.215 1.024 1.087 15 
4 2400 1.28 1.66 1.39 1.48 20 

4B 3394 1.72 2.22 1.87 1.98 20 
5 4800 2.27 2.93 2.47 2.62 25 

5B 6788 3.01 3.89 3.28 3.48 25 
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Table 10. Critical loads from LEA and ultimate loads (kN) from GMNIA. 

Case Critical 
loads (kN) Ultimate loads (kN) 

 
 A B C D E F G H 

0 4791 460.7 705.9 455.2 424.6 495.1 439 564 701.6 
1 3308 419.5 660.3 410 396.1 453 392.3 524 649.5 
2 2222 387.3 644.7 367 367 424 359.4 490.9 601 
3 830.8 271.7 412.4 285.7 285.9 361 309.1 368 442.8 

3B 447.3 214.4 301.7 240.5 240.6 300.9 267.4 294.8 334.6 
4 243.1 157.9 198.6 179 179.1 204.3 193 200.6 213.9 

4B 135.4 105.8 122.2 116 116 124.7 120.6 123.4 128.8 
5 76.62 65.79 72.15 70.1 70.11 73.69 72.24 73.09 75.06 

5B 42.88 38.36 40.49 40.12 40.13 41.33 40.86 41.04 41.6 
 

Table 11. Reduction factors. 

Case Ultimate loads (kN) 

 
A B C D E F G H 

0 1.219 1.120 1.204 1.123 1.107 1.161 1.119 1.114 
1 1.110 1.048 1.085 1.048 1.013 1.038 1.040 1.031 
2 1.025 1.023 0.971 0.971 0.948 0.951 0.974 0.954 
3 0.719 0.655 0.756 0.756 0.807 0.818 0.730 0.703 

3B 0.567 0.479 0.636 0.637 0.673 0.707 0.585 0.531 
4 0.418 0.315 0.474 0.474 0.457 0.511 0.398 0.340 

4B 0.280 0.194 0.307 0.307 0.279 0.319 0.245 0.204 
5 0.174 0.115 0.185 0.185 0.165 0.191 0.145 0.119 

5B 0.101 0.064 0.106 0.106 0.092 0.108 0.081 0.066 
 

 
Figure 8. Local and global failure of lipped channels. 
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9 Lateral torsional buckling tests 

Members with double-symmetrical I-section with basic dimensions of IPE200 
(flange centre-to-centre distance 191.5 mm, flange width 100 mm and thickness 
8.5 mm, web thickness 5.6 mm) were subjected to uniform major-axis bending by 
applying bending moment to their end sections. 

The theoretical lateral-torsional buckling load was calculated as Eq. (23). 

( )
( )2 22

1 2 2
z twz z

cr
w z zz

k L GIIEI kM C
k I EIk L

π
π

 
= + 

 
 (23) 

where 1 1.0C =  based on the uniform moment diagram, 1.0zk =  and 0.5wk =  
according to the support conditions (free to rotate, fixed in torsion and warping) 
and cross-sectional properties are 6 41.419 10zI mm= ⋅ , 452152tI mm= , 

9 612.9881 10wI mm= ⋅ . The respective slenderness was calculated from the 
theoretical buckling load. 

Table 12. Non-dimensional slenderness. 

Case Member 
length (mm) A, C, D, F B, H E G Mesh size 

(mm) 
0 200 0.0664 0.0857 0.0722 0.0767 5 
1 400 0.133 0.171 0.144 0.153 5 
2 800 0.264 0.341 0.287 0.305 10 

2B 1131 0.371 0.479 0.404 0.428 10 
3 1600 0.519 0.670 0.564 0.599 15 

3B 2263 0.718 0.927 0.781 0.829 15 
4 3200 0.977 1.26 1.06 1.13 20 

4B 4525 1.30 1.67 1.41 1.50 20 
5 6400 1.67 2.16 1.82 1.93 25 

5B 9051 2.10 2.71 2.28 2.42 25 
 

Critical loads from LEA and ultimate loads from GMNIA were also compared to 
the theoretical curves. 

It was impossible to reach the peak load in two extremely slender cases (material 
B and E, case 5B) because it was smaller than minor axis bending resistance and 
members failed in minor axis bending already turned 90 degrees prior to reaching 
elastic buckling load. 

The reduction factor for member buckling comes from the calculated ultimate 
load and characteristic elastic cross-sectional resistance (Eq. (24)), where the 
section modulus Wy,el = 197·103 mm2 and Wy,pl = 221·103 mm2 

yy

ult

Wf
M

=χ  (24) 
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Table 13. Critical loads from LEA and ultimate loads (kNm) from GMNIA. 

Case Critical 
loads (kNm) Ultimate loads (kNm) 

 
 A B C D E F G H 

0 706.6 92.21 132.4 91.66 80.44 94.73 89.85 106.7 132.24 
1 592.6 80.4 122.1 79.55 78.73 85.95 76.26 97.64 121.39 
2 560.3 77.13 118.2 76.05 71.41 83.04 72.84 94.79 117.45 

2B 452.4 63.27 99.42 61.6 60.76 70.06 59.82 79.53 97.62 
3 237.8 55.11 84.76 54.67 54.52 64.29 55.13 70.37 85.24 

3B 125.6 45.6 67 47.19 47.22 57.7 49.87 59.53 70.65 
4 68.12 35.77 48.73 39.04 39.07 47.78 42.55 47.11 53.24 

4B 38.53 26.68 33.06 29.69 29.71 33.53 31.73 33.18 35.23 
5 22.27 18.57 21.48 20.14 20.14 22.57 20.88 21.5 22.77 

5B 14.07 13.03 n/a 14.04 14.04 n/a 14.66 n/a n/a 
 

Table 14. Reduction factors (using elastic section modulus). 

Case A B C D E F G H 
0 1.559 1.343 1.550 1.360 1.354 1.519 1.353 1.342 
1 1.360 1.239 1.345 1.331 1.228 1.290 1.238 1.232 
2 1.304 1.199 1.286 1.208 1.187 1.232 1.202 1.192 

2B 1.070 1.009 1.042 1.028 1.001 1.012 1.009 0.991 
3 0.932 0.860 0.925 0.922 0.919 0.932 0.893 0.865 

3B 0.771 0.680 0.798 0.799 0.825 0.843 0.755 0.717 
4 0.605 0.494 0.660 0.661 0.683 0.720 0.598 0.540 

4B 0.451 0.335 0.502 0.502 0.479 0.537 0.421 0.357 
5 0.314 0.218 0.341 0.341 0.323 0.353 0.273 0.231 

5B 0.220 n/a 0.237 0.237 n/a 0.248 n/a n/a 
 

Table 15. Reduction factors (using plastic section modulus). 

Case A B C D E F G H 
0 1.391 1.198 1.383 1.213 1.207 1.355 1.207 1.197 
1 1.213 1.105 1.200 1.187 1.096 1.150 1.105 1.099 
2 1.163 1.070 1.147 1.077 1.058 1.099 1.072 1.063 

2B 0.954 0.900 0.929 0.916 0.893 0.902 0.900 0.883 
3 0.831 0.767 0.825 0.822 0.819 0.832 0.796 0.771 

3B 0.688 0.606 0.712 0.712 0.735 0.752 0.673 0.639 
4 0.540 0.441 0.589 0.589 0.609 0.642 0.533 0.482 

4B 0.402 0.299 0.448 0.448 0.427 0.479 0.375 0.319 
5 0.280 0.194 0.304 0.304 0.288 0.315 0.243 0.206 

5B 0.197 n/a 0.212 0.212 n/a 0.221 n/a n/a 
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10 Tension tests 

In order to study the average material model of the complex cold-formed cross 
sections with enhanced material properties and residual stresses, we created 
several series of numerical models for the tensile tests of the whole members and 
coupons from their flat faces. Member cross-sectional shape was fixed at both 
ends and the member was loaded with increasing deformation up to 150% of its 
original length. 

  
Figure 9. Tension tests. 
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11 Results of parametric study 

From the collected buckling resistances of 8 materials, we selected two most 
important parameters that affect the shape of strength curve, nonlinear factor n 
and the yield point fy (σ02). In the following parametric study, those effects are 
investigated with three materials for each of the variable parameters for flexural 
buckling, torsional-flexural buckling and lateral-torsional buckling. Reduction 
factors χ were calculated as ratios of member loading capacities obtained by finite 
element calculations and characteristic compression or bending resistances 
according to Eurocode 3. Maximum differences between reduction factors 
obtained at the same nondimensional slenderness λ were observed and reported in 
the following chapters. 

11.1 The effect of material nonlinearity 

Three material models were used in this study with variable n factor (see Figure 
10). 

 
Figure 10. Stress-strain relationship of studied materials. 

The examples of typical strength curves are plotted in Figure 11 where the curve 
“Difference” shows the quantity χN3–χN1, reaching its maximum value at 
slenderness approximately equal to 1. 
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Figure 11. Comparison of FEM results with variable n. 

Although, the numerical studies were carried out with the complex two-stage 
material model, it was more convenient to use the simple Ramberg-Osgood 
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equation for the evaluation of strength curve approximations. In the studied range 
of material strains the difference in both material models is insignificant. 

11.2 The effect of material yield strength 

The same study was carried out on three materials with different yield point (see 
Figure 12). 

 
Figure 12. Stress-strain relationship of studied materials. 

The strength curves formed from the ultimate member resistances are plotted in 
Figure 13. Even though the big differences in stress-strain relationships indicate 
that the effect on strength curves may be higher, the degradation of tangent 
modulus governs the shape of non-dimensional strength curve rather than the 
yield point. 
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Figure 13. Comparison of FEM results with variable yield strength. 
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11.3 The effect of bending residual stresses 

Additional study was carried on to evaluate the effect of residual stresses on the 
load-displacement relationship of work-hardened materials. The load-
displacement curve of the full member tension test is usually the basis of stress-
strain model of the average material of the cross-section. Because of the complex 
non-linear material behavior is different in corners and flat parts of the cross-
section, it is difficult to calculate the material model parameters analytically and 
therefore either experimental or numerical analysis has to be performed (see 
Chapter 10). 

In this study, we chose the material C (ferritic steel 1 with n = 10) as a virgin 
material that is usually given by mill certificate and we assumed that the square 
hollow section (side 72 mm, thickness 3 mm, corner radius 3 mm) was cold 
formed by circle-to-rectangle forming process, where bending residual stresses are 
too high to be neglected. Material properties of corners and flats were calculated 
according the theory in Chapters 2 and 5 and are presented in the Table 16. 

Table 16. Material parameters used for the residual bending stress study. 

 E0 σ02 n σu m εu 
 GPa MPa  MPa   
Virgin material 200 300.0 10 600.0 2.75 0.500 
Flats 200 412.1 10 666.6 3.16 0.382 
Corners 200 553.3 10 829.9 3.33 0.333 
 

We assumed the fully plastic though-thickness stress distribution according to 
[19] and the uniform maximum value in the whole cross-section that was 
changing up to 150% of virgin material yield strength which corresponds to 89% 
of average material proof stress (that is reported in the figures and tables). 
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Figure 14. Stress-strain diagrams from the tensile test simulations of full 
members. 

As a reference calculation, we simulated also coupons with the material properties 
of the flat faces. In those simulations, the level of residual bending stress 
maximum was changing from 0% to 100% of the flats yield strength that was 
assumed to be the reference average material yield strength as well. 
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Figure 15. Stress-strain diagrams from the tensile tests of coupons. 

Using the load-displacement data converted to the stress-strain format (Figure 14 
and Figure 15), we were able to calculate material parameters of the average 
material, where the residual stresses are already included in the material 
properties. We applied the advanced optimization algorithm reported in [3] to 
obtain the accurate material parameters for the selected two-stage material model. 

We observed a decreasing initial elastic modulus with increasing residual stress 
which is the clear effect of material non-linearity, where half of the sheet 
thickness has initial stiffness equal to the tangent modulus corresponding to the 
level of residual stress. The same effect was expected to alter also the value of 
non-linear n factor. 
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Figure 16. Initial elastic modulus change. 

As it is demonstrated on the Figure 16, the ratio between the initial elastic 
modulus of the average material and the virgin material is decreasing more 
significantly from 20% residual stress level. The residual stress distribution 
proposed by Gardner and Cruise [10] is plotted for comparison and it well 
corresponds with the observed trends using the uniform level of residual stress 
over the whole cross-section. 

 
Figure 17. Non-linear factor change. 

The non-linear factor n is also dependent on the residual stress level, however, its 
behaviour is more complex and it can have also higher values than the original 
virgin material non-linear factor (see Figure 17). 
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12 Regression analysis of proposed strength curve 

In order to compare the suitability of the transformed Ayrton-Perry law to be used 
as strength curve approximation formula, we used non-linear regression analysis 
to fit the Eq. (14) to the finite element results and compared it with the same 
regression on the original Ayrton-Perry curve from Eq. (7). 

The outputs of non-linear regression analysis are the unknown parameters α and 
λ0 and the average absolute error of the best-fitted curve to the numerical results R 
(Table 17 to Table 19). The results are also compared to the Rasmussen and 
Rondal strength curves [16], even though they are based on the numerical analysis 
with lower initial imperfection amplitude (L/1500) showing higher reduction 
factors with almost constant offset to the transformed Ayrton-Perry calculation 
(see Figure 18). The parameters of Rasmussen and Rondal imperfection factor α, 
β, λ0 and λ1 are included in the Table 17 to Table 19 for comparison. 

The transformed Ayrton-Perry curve (TAP) has the lowest error value R in 17 of 
18 cases showing that the proposed law can describe the shape of strength curve 
of non-linear materials very well taking into account the Ramberg-Osgood 
hardening parameter n. 

With the increasing non-linear factor n, the initial slenderness λ0 was decreasing 
which is the most visible effect in the transformed Ayrton-Perry results 
(0.36→0.27→0.18 in flexural buckling, 0.35→0.27→0.18 in torsional-flexural 
buckling and 0.36→0.27→0.16 in lateral-torsional buckling study). 

Table 17. Comparison of approximations of flexural buckling (FB) strength 
curves. 

 N1 (n = 5) N2 (n = 10) N3 (n = 25) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.88 0.31 1.27 0.64 0.35 0.69 0.25 0.26 0.27 
   0.16   0.15   0.23 
 0.31 0.36 0.61 0.28 0.27 0.57 0.12 0.18 0.44 
   0.35   0.24   0.11 
 0.030 0.016 0.059 0.046 0.010 0.051 0.044 0.011 0.061 

 F1 (fy = 300 MPa) F2 (fy = 400 MPa) F3 (fy = 500 MPa) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.60 0.35 0.69 0.29 0.31 0.66 0.28 0.29 0.63 
   0.15   0.13   0.12 
 0.25 0.27 0.57 0.03 0.27 0.60 0.11 0.32 0.63 
   0.24   0.29   0.33 
 0.029 0.007 0.030 0.018 0.011 0.017 0.018 0.010 0.020 
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Table 18. Comparison of approximations of torsional-flexural buckling (TFB) 
strength curves. 

 N1 (n = 5) N2 (n = 10) N3 (n = 25) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.65 0.15 1.27 0.43 0.15 0.69 0.25 0.14 0.27 
   0.16   0.15   0.23 
 0.36 0.35 0.61 0.35 0.27 0.57 0.32 0.18 0.44 
   0.35   0.24   0.11 
 0.021 0.011 0.046 0.032 0.018 0.047 0.031 0.022 0.034 

 F1 (fy = 300 MPa) F2 (fy = 400 MPa) F3 (fy = 500 MPa) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.38 0.15 0.69 0.29 0.17 0.66 0.31 0.18 0.63 
   0.15   0.13   0.12 
 0.29 0.27 0.57 0.33 0.31 0.60 0.32 0.34 0.63 
   0.24   0.29   0.33 
 0.023 0.018 0.034 0.021 0.017 0.033 0.020 0.017 0.029 

 

Table 19. Comparison of approximations of lateral-torsional buckling (LTB) 
strength curves. 

 N1 (n = 5) N2 (n = 10) N3 (n = 25) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.79 0.22 1.27 0.72 0.28 0.69 0.56 0.26 0.27 
   0.16   0.15   0.23 
 0.35 0.36 0.61 0.36 0.27 0.57 0.36 0.16 0.44 
   0.35   0.24   0.11 
 0.039 0.016 0.086 0.053 0.035 0.084 0.060 0.040 0.089 

 F1 (fy = 300 MPa) F2 (fy = 400 MPa) F3 (fy = 500 MPa) 
 AP TAP R97 AP TAP R97 AP TAP R97 

 0.64 0.28 0.69 0.52 0.22 0.66 0.46 0.26 0.63 
   0.15   0.13   0.12 
 0.34 0.27 0.57 0.33 0.31 0.60 0.37 0.33 0.63 
   0.24   0.29   0.33 
 0.038 0.024 0.057 0.037 0.027 0.052 0.036 0.024 0.050 
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Figure 18. Example comparison of models with curve-fitted parameters in 
flexural buckling. 
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13 Conclusions 

With increasing non-linear n parameter, initial slenderness λ0 decreases. This 
effect implies that while initial slenderness 0.4 in Eurocode (derived from mainly 
austenitic steel experimental results) can be used for materials with low n 
parameter, it may be unconservative to use it in combination with ferritic grades 
that have generally higher n values. 

The transformed Ayrton-Perry curve describes more precisely the behaviour of 
ferritic stainless-steel members subjected to buckling loads than the formulas used 
in present codes. However it does not account on many uncertainties such as non-
linear stress distribution in the cross-section, and therefore it would be necessary 
to adjust its parameters to the real experimental results. The rule can be easily 
extended to all metallic alloys and materials following Ramberg-Osgood law. 

The effect of variation of yield strength confirms the results of Rasmussen and 
Rondal [16] also in torsional-flexural and lateral-torsional buckling showing that 
the biggest difference in studied cases occurs when the non-dimensional 
slenderness λ ranges from 0.5 to 1.0. 

Bending residual stresses due to cold-working are one of the reasons for the 
different load-displacement behaviour of the virgin material and the whole 
member or coupons originating from the flat and curved member parts. However, 
their prediction is very complex and therefore it is usually recommended to 
perform full-section tests to obtain these values experimentally. 
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Appendix A: Austenitic steel 

 
Figure 19. Material model. 

 
Figure 20. FE results: Strength curves for different buckling modes. 
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Appendix B: Duplex steel 

 
Figure 21. Material model. 

 
Figure 22. FE results: Strength curves for different buckling modes. 
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Appendix C: Ferritic steel 1 

 
Figure 23. Material model. 

 
Figure 24. FE results: Strength curves for different buckling modes. 
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Figure 25. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 

 
Figure 26. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Figure 27. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Appendix D: Ferritic steel 2 

 
Figure 28. Material model. 

 
Figure 29. FE results: Strength curves for different buckling modes. 
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Figure 30. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 

 
Figure 31. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Figure 32. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Appendix E: Carbon steel 

 
Figure 33. Material model. 

 
Figure 34. FE results: Strength curves for different buckling modes. 
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Figure 35. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 

 
Figure 36. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Figure 37. NLR results: The best-fitted approximation curves (Ayrton-Perry and 
Transformed Ayrton-Perry) compared to Rasmussen and Rondal model. 
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Appendix F: Material models comparison 

 
Figure 38. Comparison of the basic material models. 

 
Figure 39. Comparison of the basic material models with normalized stress and 
strain. 
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Appendix G: Methods for transformed Ayrton-Perry curve 
calculation 

The following calculation script is coded in Python in order to easily construct 
strength curves with transformed slenderness using the iterative approach. 

class matClass: 
    """ Definition of material parameters """ 
    def __init__(self): 
        self.n=5. 
        self.E0=200000. 
        self.s02=300. 
 
def lamNL(lam,chi,mat): 
    """ Calculation of transformed slenderness """  
    return lam*(1+0.002*mat.n*(mat.E0/mat.s02)*chi**(mat.n-1))**0.5 
 
def fi(lam,lam0,alp): 
    """ Calculation fi factor """   
    return 0.5*(1+alp*(lam-lam0)+lam**2) 
 
def chi(lam,lam0,alp): 
    """ Calculation of reduction factor """ 
    if fi(lam,lam0,alp)>lam: 
        return min(1.,1./(fi(lam,lam0,alp)+(fi(lam,lam0,alp)**2-
lam**2)**0.5)) 
    else: return 1. 
 
def getTransformedAP(mat=matClass(), alp=0., lam0=0., maxLam=3., 
maxSteps=50): 
    """ Calculation of strength curve """ 
    n,E0,s02 = mat.n,mat.E0,mat.s02 
    lam0=min(lam0,1/(1+0.002*n*(E0/s02))**0.5) 
    minDif=0.00001 
    maxIter=500 
    curve=[['lam','chi(Transformed_AP)'],] 
    for i in range(maxSteps+1): 
        lam=i*maxLam/maxSteps 
        chiMax=1. 
        chiMin=0. 
        chiAct=1. 
        iter=0             
        while abs(chiAct-chi(lamNL(lam, chiAct, mat),lamNL(lam0, chiAct, 
        mat),alp))>minDif and iter<maxIter: 
            if chiAct-chi(lamNL(lam, chiAct, mat),lamNL(lam0, chiAct, 
mat),alp)>0: 
                chiMax=chiAct 
            else: chiMin=chiAct 
            chiAct=0.5*(chiMax+chiMin) 
            iter=iter+1 
        if iter<maxIter:curve.append([lam,chiAct]) 
    return curve 
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Specim

RHSF1
RHSF1
RHSF1
RHSF2
RHSF2
RHSF2
RHSF3
RHSF3
RHSF3
RHSN
RHSN
RHSN
RHSN2
RHSN2
RHSN2
RHSN
RHSN
RHSN

men ε 

11 0.86 1
13 0.86 5
15 0.86 3
21 0.75 1
23 0.75 6
25 0.75 3
31 0.67 2
33 0.67 6
35 0.67 4
11 0.86 1
13 0.86 5
15 0.86 3
21 0.86 1
23 0.86 5
25 0.86 3
31 0.86 1
33 0.86 5
35 0.86 3

 

c/tε 
Section 
class 

164.40 4 
53.26 4 
31.03 4 

189.84 4 
61.50 4 
35.83 4 

212.24 4 
68.75 4 
40.06 4 

164.40 4 
53.26 4 
31.03 4 

164.40 4 
53.26 4 
31.03 4 

164.40 4 
53.26 4 
31.03 4 

    

Table 4.2 Stub 

Atot (mm2) 
σcr, the

(MPa

432 34.87
1296 313.8
2160 871.7
432 34.87
1296 313.8
2160 871.7
432 34.87
1296 313.8
2160 871.7
432 34.87
1296 313.8
2160 871.7
432 34.87
1296 313.8
2160 871.7
432 34.87
1296 313.8
2160 871.7

 

column results in R

eo 
a) 

λp,h λp

7 2.9332 1.46
2 0.9777 0.48
3 0.5866 0.29

7 3.3870 1.69
2 1.1290 0.56
3 0.6774 0.33

7 3.7867 1.89
2 1.2622 0.63
3 0.7573 0.37

7 2.9332 1.46
2 0.9777 0.48
3 0.5866 0.29

7 2.9332 1.46
2 0.9777 0.48
3 0.5866 0.29

7 2.9332 1.46
2 0.9777 0.48
3 0.5866 0.29

RHS. Class limits as

,b ρh 

666 0.2487 
889 0.6588 
933 0.9528 
935 0.2170 
645 0.5857 
387 0.8673 
934 0.1952 
311 0.5332 
787 0.8014 
666 0.2487 
889 0.6588 
933 0.9528 
666 0.2487 
889 0.6588 
933 0.9528 
666 0.2487 
889 0.6588 
933 0.9528 

sessment according

ρb 
Aeff,tot 
(mm2)

0.4683 139.05
1.0000 1001.23
1.0000 2091.97
0.4123 121.88
0.9753 927.41
1.0000 1968.84
0.3729 109.90
0.9094 853.50
1.0000 1874.04
0.4683 139.05
1.0000 1001.23
1.0000 2091.97
0.4683 139.05
1.0000 1001.23
1.0000 2091.97
0.4683 139.05
1.0000 1001.23
1.0000 2091.97

g to EN1993-1-4 

 
Nult,num 
(kN) 

Aσ0.

5 51.60 129
3 343.30 388
7 713.80 648
8 59.60 172
1 422.50 518
4 926.10 864
0 63.80 216
0 494.40 648
4 1144.60 1080
5 48.00 129
3 336.00 388
7 751.70 648
5 51.50 129
3 343.80 388
7 738.80 648
5 55.30 129
3 356.40 388
7 704.20 648

25 (51) 

2 (kN) 
Nult,EN 
(kN) 

N
A

9.60 41.71 0
8.80 300.37 0
8.00 627.59 1
2.80 48.75 0
8.40 370.96 0
4.00 787.54 1
6.00 54.95 0
8.00 426.75 0
0.00 937.02 1

9.60 41.71 0
8.80 300.37 0
8.00 627.59 1
9.60 41.71 0
8.80 300.37 0
8.00 627.59 1
9.60 41.71 0
8.80 300.37 0
8.00 627.59 1

Nult,num/
Aσ0.2 

Nult,EN/
Aσ0.2 

N
N

0.3981 0.3219 
0.8830 0.7726 
1.1015 0.9685 
0.3449 0.2821 
0.8150 0.7156 
1.0719 0.9115 
0.2954 0.2544 
0.7630 0.6586 
1.0598 0.8676 
0.3704 0.3219 
0.8642 0.7726 
1.1600 0.9685 
0.3974 0.3219 
0.8843 0.7726 
1.1401 0.9685 
0.4267 0.3219 
0.9167 0.7726 
1.0867 0.9685 

Nult,num/ 
Nult,EN 

1.2370 
1.1429 
1.1374 
1.2226 
1.1389 
1.1759 
1.1611 
1.1585 
1.2215 
1.1507 
1.1186 
1.1978 
1.2346 
1.1446 
1.1772 
1.3257 
1.1865 
1.1221 
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Specimen 

SHSF11 
SHSF13 
SHSF15 
SHSF21 
SHSF23 
SHSF25 
SHSF31 
SHSF33 
SHSF35 
SHSN11 
SHSN13 
SHSN15 
SHSN21 
SHSN23 
SHSN25 
SHSN31 
SHSN33 
SHSN35 

ε c/tε 

0.86 81.04 
0.86 25.47 
0.86 14.36 
0.75 93.58 
0.75 29.41 
0.75 16.58 
0.67 104.63 
0.67 32.88 
0.67 18.53 
0.86 81.04 
0.86 25.47 
0.86 14.36 
0.86 81.04 
0.86 25.47 
0.86 14.36 
0.86 81.04 
0.86 25.47 
0.86 14.36 

    

Table 4.3 Stub 

Section 
class 

Atot (mm

4 288 
1 864 
1 1440 
4 288 
3 864 
1 1440 
4 288 
4 864 
1 1440 
4 288 
1 864 
1 1440 
4 288 
1 864 
1 1440 
4 288 
1 864 
1 1440 

 

 column results in S

m2) 
σcr, theo 
(MPa) 

λ

139.48 1.4
1255.29 0.4
3486.92 0.2
139.48 1.6
1255.29 0.5
3486.92 0.3
139.48 1.8
1255.29 0.6
3486.92 0.3
139.48 1.4
1255.29 0.4
3486.92 0.2
139.48 1.4
1255.29 0.4
3486.92 0.2
139.48 1.4
1255.29 0.4
3486.92 0.2

SHS. Class limits as

λp ρ 

4666 0.4683 
4889 1.0000 
2933 1.0000 
6935 0.4123 
5645 0.9753 
3387 1.0000 
8934 0.3729 
6311 0.9094 
3787 1.0000 
4666 0.4683 
4889 1.0000 
2933 1.0000 
4666 0.4683 
4889 1.0000 
2933 1.0000 
4666 0.4683 
4889 1.0000 
2933 1.0000 

sessment according

Aeff,tot 
(mm2) 

Nult,num

(kN) 

134.86 46.40
864.00 289.10

1440.00 510.30
118.74 56.20
842.68 377.20

1440.00 678.00
107.39 65.70
785.72 465.20

1440.00 846.20
134.86 43.50
864.00 307.80

1440.00 577.20
134.86 46.40
864.00 295.00

1440.00 573.30
134.86 49.70
864.00 289.30

1440.00 560.80

g to EN1993-1-4 

m 
Aσ0.2 (kN) 

Nult

(kN

 86.40 40.4
0 259.20 259.
0 432.00 432.
 115.20 47.4

0 345.60 337.
0 576.00 576.
 144.00 53.6

0 432.00 392.
0 720.00 720.
 86.40 40.4

0 259.20 259.
0 432.00 432.
 86.40 40.4

0 259.20 259.
0 432.00 432.
 86.40 40.4

0 259.20 259.
0 432.00 432.

26 (51) 

t,EN 
N) 

Nult,num/
Aσ0.2 

Nult,E

Aσ0.2

46 0.5370 0.46
20 1.1154 1.00
00 1.1813 1.00
49 0.4878 0.41
07 1.0914 0.97
00 1.1771 1.00
69 0.4563 0.37
86 1.0769 0.90
00 1.1753 1.00
46 0.5035 0.46
20 1.1875 1.00
00 1.3361 1.00
46 0.5370 0.46
20 1.1381 1.00
00 1.3271 1.00
46 0.5752 0.46
20 1.1161 1.00
00 1.2981 1.00

EN/
2 

Nult,num/ 
Nult,EN 

683 1.1468 
000 1.1154 
000 1.1813 
123 1.1833 
753 1.1190 
000 1.1771 
729 1.2236 
094 1.1841 
000 1.1753 
683 1.0752 
000 1.1875 
000 1.3361 
683 1.1468 
000 1.1381 
000 1.3271 
683 1.2284 
000 1.1161 
000 1.2981 

82 (179)



 
For the 
suggeste
effective 
statistica
 

 

 
In order 
specime
most rele
design ca
 
 

    

fundamenta
ed a new cla
 width formu

ally validated 

0.

 to assess 
ns have bee
evant results
an be carried

al case of in
ss 3 limit for

ulae specified
 according to

⁄

772
̅

0.12
̅

if this new 
en recalculate
s. The new ob
d out by appl

 

nternal mem
r stainless ste
d in EN1993-
o EN 1990. 

30.7 →

25
1 →

proposal for
ed using this
btained value
ying the new

mbers in com
eel (37c/tε). 
-1-4 (2006) b

⁄ 37  

0.772
̅

rmulae is m
s new reduct
es are less c

w proposal lim

mpression, G
For consiste
be modified 

 

0.079
̅

ore suitable 
tion factor. T
conservative 
mits by Gardn

Gardner and
ncy, it was a
to Equation 

1 

 to predict t
Tables 4.4 an
which means
ner and Theo

d Theofanou
also proposed
(24), which 

the ultimate 
nd 4.5 summ
s that a more
ofanous (200

27 (5

us (2008) 
d that the 
has been 

(24) 

 load, all 
marize the 
e efficient 

08). 

51) 

83 (179)



 

 

Specim

RHSF1
RHSF1
RHSF1
RHSF2
RHSF2
RHSF2
RHSF3
RHSF3
RHSF3
RHSN1
RHSN1
RHSN1
RHSN2
RHSN2
RHSN2
RHSN3
RHSN3
RHSN3

men ε 

1 0.86 16
3 0.86 5
5 0.86 3

21 0.75 18
23 0.75 6
25 0.75 3
31 0.67 2
33 0.67 6
35 0.67 4
11 0.86 16
13 0.86 5
15 0.86 3
21 0.86 16
23 0.86 5
25 0.86 3
31 0.86 16
33 0.86 5
35 0.86 3

Table 4.4
 

c/tε 
Section 
class 
EC 

64.40 4 
53.26 4 
31.03 4 
89.84 4 
61.50 4 
35.83 4 
12.24 4 
68.75 4 
40.06 4 
64.40 4 
53.26 4 
31.03 4 
64.40 4 
53.26 4 
31.03 4 
64.40 4 
53.26 4 
31.03 4 

    

4 Stub column resu

New 
Section 
class  

ρ,h 

4 0.248
4 0.658
3 0.952
4 0.217
4 0.585
3 0.867
4 0.195
4 0.533
4 0.801
4 0.248
4 0.658
3 0.952
4 0.248
4 0.658
3 0.952
4 0.248
4 0.658
3 0.952

 

lts in RHS accordin

New  ρ,h 

7 0.2540 0
8 0.7069 1
8 1.0000 1
0 0.2210 0
7 0.6218 0
3 0.9675 1
2 0.1984 0
2 0.5620 0
4 0.8816 1
7 0.2540 0
8 0.7069 1
8 1.0000 1
7 0.2540 0
8 0.7069 1
8 1.0000 1
7 0.2540 0
8 0.7069 1
8 1.0000 1

g to the new propos

ρ,b New  ρ,b

0.4683 0.4897 
1.0000 1.0000 
1.0000 1.0000 
0.4123 0.4283 
0.9753 1.0000 
1.0000 1.0000 
0.3729 0.3857 
0.9094 1.0000 
1.0000 1.0000 
0.4683 0.4897 
1.0000 1.0000 
1.0000 1.0000 
0.4683 0.4897 
1.0000 1.0000 
1.0000 1.0000 
0.4683 0.4897 
1.0000 1.0000 
1.0000 1.0000 

sal formulae by Gar

b 
Aeff,tot 
(mm2) 

N
A
(m

 139.05 14
 1001.23 104
 2091.97 216
 121.88 12
 927.41 96
 1968.84 211
 109.90 11
 853.50 91
 1874.04 198
 139.05 14
 1001.23 104
 2091.97 216
 139.05 14
 1001.23 104
 2091.97 216
 139.05 14
 1001.23 104
 2091.97 216

rdner and Theofano

New 
eff,tot 

mm2) 

Nult,num 
(kN) 

3.67 51.60 
42.80 343.30 
60.00 713.80 
5.34 59.60 
9.25 422.50 
13.20 926.10 
2.67 63.80 
7.59 494.40 
89.53 1144.60 
3.67 48.00 
42.80 336.00 
60.00 751.70 
3.67 51.50 
42.80 343.80 
60.00 738.80 
3.67 55.30 
42.80 356.40 
60.00 704.20 

28 (51) 

ous (2008) 

Nult,EN (kN) Nult,new

41.71 43
300.37 312
627.59 648
48.75 50

370.96 387
787.54 845
54.95 56

426.75 458
937.02 994
41.71 43

300.37 312
627.59 648
41.71 43

300.37 312
627.59 648
41.71 43

300.37 312
627.59 648

w (kN) 
Nult,num/ 
Nult,EN 

.10 1.2370 
2.84 1.1429 
8.00 1.1374 
.14 1.2226 
7.70 1.1389 
5.28 1.1759 
.33 1.1611 
8.80 1.1585 
4.76 1.2215 
.10 1.1507 
2.84 1.1186 
8.00 1.1978 
.10 1.2346 
2.84 1.1446 
8.00 1.1772 
.10 1.3257 
2.84 1.1865 
8.00 1.1221 

Nult,num/ 
Nult,new 

1.1972 
1.0974 
1.1015 
1.1888 
1.0898 
1.0956 
1.1325 
1.0776 
1.1506 
1.1137 
1.0740 
1.1600 
1.1949 
1.0990 
1.1401 
1.2831 
1.1392 
1.0867 
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Specimen

SHSF11 
SHSF13 
SHSF15 
SHSF21 
SHSF23 
SHSF25 
SHSF31 
SHSF33 
SHSF35 
SHSN11 
SHSN13 
SHSN15 
SHSN21 
SHSN23 
SHSN25 
SHSN31 
SHSN33 
SHSN35 

n ε c/tε 

0.86 81.04
0.86 25.47
0.86 14.36
0.75 93.58
0.75 29.41
0.75 16.58
0.67 104.63
0.67 32.88
0.67 18.53
0.86 81.04
0.86 25.47
0.86 14.36
0.86 81.04
0.86 25.47
0.86 14.36
0.86 81.04
0.86 25.47
0.86 14.36

Table 4.5

    

Section 
class 

Ne
Sec
cla

4 4 4
7 1 1
6 1 1
8 4 4

 3 3
8 1 1
3 4 4

8 4 4
3 1 1
4 4 4
7 1 1
6 1 1
4 4 4
7 1 1
6 1 1
4 4 4
7 1 1
6 1 1
5 Stub column resul

 

ew 
ction 
ass 

ρ 

4 0.4683 
1 1.0000 
1 1.0000 
4 0.4123 
3 0.9753 
1 1.0000 
4 0.3729 
4 0.9094 
1 1.0000 
4 0.4683 
1 1.0000 
1 1.0000 
4 0.4683 
1 1.0000 
1 1.0000 
4 0.4683 
1 1.0000 
1 1.0000 
ts in SHS according

New 
ρ Aeff,to

(mm2

0.4897 134.8
1.0000 864.0
1.0000 1440.
0.4283 118.7
1.0000 842.6
1.0000 1440.
0.3857 107.3
1.0000 785.7
1.0000 1440.
0.4897 134.8
1.0000 864.0
1.0000 1440.
0.4897 134.8
1.0000 864.0
1.0000 1440.
0.4897 134.8
1.0000 864.0
1.0000 1440.

g to the new propos
 

ot 
2) 

New 
Aeff,tot 
(mm2) 

Nul

(k

86 141.02 46
00 864.00 289
00 1440.00 510

74 123.36 56
68 864.00 377
00 1440.00 678

39 111.08 65
72 864.00 465
00 1440.00 846

86 141.02 43
00 864.00 307
00 1440.00 577

86 141.02 46
00 864.00 295
00 1440.00 573

86 141.02 49
00 864.00 289
00 1440.00 560
sal formulae by  Gar

lt,num 
kN) 

Nult,EN 
(kN) 

6.40 40.46 
9.10 259.20 
0.30 432.00 

6.20 47.49 
7.20 337.07 
8.00 576.00 

5.70 53.69 
5.20 392.86 
6.20 720.00 

3.50 40.46 
7.80 259.20 
7.20 432.00 

6.40 40.46 
5.00 259.20 
3.30 432.00 

9.70 40.46 
9.30 259.20 
0.80 432.00 
rdner and Theofano

29 (51) 

Nult,new 
(kN) Nult,num/ 

Nult,EN 

42.31 1.1468
259.20 1.1154
432.00 1.1813
49.34 1.1833

345.60 1.1190
576.00 1.1771
55.54 1.2236

432.00 1.1841
720.00 1.1753
42.31 1.0752

259.20 1.1875
432.00 1.3361
42.31 1.1468

259.20 1.1381
432.00 1.3271
42.31 1.2284

259.20 1.1161
432.00 1.2981

ous (2008) 

Nult,num/ 
Nult,new 

 1.0968 
 1.1154 
 1.1813 
 1.1390 
 1.0914 
 1.1771 
 1.1829 
 1.0769 
 1.1753 
 1.0282 
 1.1875 
 1.3361 
 1.0968 
 1.1381 
 1.3271 
 1.1748 
 1.1161 
 1.2981 
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SN13
SN23
SN33
SF13
SF23
SF33
SN14
SN24
SN34
SF14
SF24
SF34
SN18
SN28
SN38
SF18
SF28
SF38

SN110
SN210
SN310
SF110
SF210
SF310

    

men ε 

301 0.86 3
301 0.86 3
301 0.86 3
01 0.86 3
01 0.75 3
01 0.67 4

401 0.86 4
401 0.86 4
401 0.86 4
01 0.86 4
01 0.75 5
01 0.67 5

803 0.86 2
803 0.86 2
803 0.86 2
03 0.86 2
03 0.75 3
03 0.67 3
003 0.86 3
003 0.86 3
003 0.86 3
003 0.86 3
003 0.75 4
003 0.67 4

c/tε D&W 

32.42 0.009 
32.42 0.009 
32.42 0.009 
32.42 0.009 
37.43 0.011 
41.85 0.014 
44.00 0.015 
44.00 0.015 
44.00 0.015 
44.00 0.015 
50.80 0.020 
56.80 0.025 
28.56 0.020 
28.56 0.020 
28.56 0.020 
28.56 0.020 
32.98 0.027 
36.87 0.034 
36.28 0.032 
36.28 0.032 
36.28 0.032 
36.28 0.032 
41.89 0.042 
46.83 0.053 

 

Table 4.9 R

σcr,LEA 

(MPa) 

 854.66 
 854.66 
 854.66 
 854.66 
 854.66 
 854.66 
 484.93 
 484.93 
 484.93 
 484.93 
 484.93 
 484.93 
 1076.43 
 1076.43 
 1076.43 
 1076.43 
 1076.43 
 1076.43 
 694.84 
 694.84 
 694.84 
 694.84 
 694.84 
 694.84 

Results from L
 

Ncr,LEA 

(kN) 

102.56 
102.56 
102.56 
102.56 
102.56 
102.56 
77.59 
77.59 
77.59 
77.59 
77.59 
77.59 

1033.38 
1033.38 
1033.38 
1033.38 
1033.38 
1033.38 
833.81 
833.81 
833.81 
833.81 
833.81 
833.81 

LEA analysis 

Section 
class 

4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
3 
3 
3 
3 
4 
4 
4 
4 
4 
4 
4 
4 

D&W 
Nult,num 
(kN) 

37.80 
38.40 
36.70 
37.80 
48.30 
56.50 
44.10 
44.00 
45.20 
44.00 
54.00 
62.10 

326.40 2
312.50 2
309.30 2
313.50 2
408.30 3
494.10 4
371.60 3
357.60 3
356.60 3
357.70 3
449.90 4
537.80 6

Aσ0.2 
(kN) 

D

Nult,nu

36.0 1.0
36.0 1.0
36.0 1.0
36.0 1.0
48.0 1.0
60.0 0.9
48.0 0.9
48.0 0.9
48.0 0.9
48.0 0.9
64.0 0.8
80.0 0.7

288.0 1.
288.0 1.0
288.0 1.0
288.0 1.0
384.0 1.0
480.0 1.0
360.0 1.0
360.0 0.9
360.0 0.9
360.0 0.9
480.0 0.9
600.0 0.8

48 (5

D&W 

um/Aσ0.2 

0500 
0667 
0194 
0500 
0063 
9417 
9188 
9167 
9417 
9167 
8438 
7763 
1333 
0851 
0740 
0885 
0633 
0294 
0322 
9933 
9906 
9936 
9373 
8963 

51) 
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Specimen ε 

SF11003 0.86
SF1301 0.86
SF1401 0.86
SF1803 0.86
SF21003 0.75
SF2301 0.67
SF2401 0.86
SF2803 0.86
SF31003 0.86
SF3301 0.86
SF3401 0.75
SF3803 0.67
SN11003 0.86
SN1301 0.86
SN1401 0.86
SN1803 0.86
SN21003 0.75
SN2301 0.67
SN2401 0.86
SN2803 0.86
SN31003 0.86
SN3301 0.86
SN3401 0.75

Table 4

 

c/tε 
Se
c

6 32.42 
6 32.42 
6 32.42 
6 32.42 
5 37.43 
7 41.85 
6 44.00 
6 44.00 
6 44.00 
6 44.00 
5 50.80 
7 56.80 
6 28.56 
6 28.56 
6 28.56 
6 28.56 
5 32.98 
7 36.87 
6 36.28 
6 36.28 
6 36.28 
6 36.28 
5 41.89 

    

4.10 Stub column re

ection 
class 

Atot (mm2) 

4 1200 
4 120 
4 160 
3 960 
4 1200 
4 120 
4 160 
4 960 
4 1200 
4 120 
4 160 
4 960 
4 1200 
4 120 
4 160 
3 960 
4 1200 
4 120 
4 160 
3 960 
4 1200 
4 120 
4 160 

 

esults in new datab

σcr, theo 
(MPa) 

λ 

694.840 0.679
854.667 0.611
484.933 0.814

1076.433 0.543
694.840 0.784
854.667 0.705
484.933 0.940

1076.433 0.627
694.840 0.876
854.667 0.788
484.933 1.051

1076.433 0.701
694.840 0.679
854.667 0.611
484.933 0.814

1076.433 0.543
694.840 0.679
854.667 0.611
484.933 0.814

1076.433 0.543
694.840 0.679
854.667 0.611
484.933 0.814

ase extension. Clas
 

ρ 

90 0.8659 1
11 0.9286 
48 0.7592 
32 0.9976 
40 0.7813 
56 0.8430 
08 0.6793 
72 0.9131 
66 0.7180 
89 0.7777 
19 0.6210 
12 0.8467 
90 0.8659 1
11 0.9286 
48 0.7592 
32 0.9976 
90 0.8659 1
11 0.9286 
48 0.7592 
32 0.9976 
90 0.8659 1
11 0.9286 
48 0.7592 

ss limits assessmen

Aeff,tot 
(mm2) 

Nult,num 
(kN) 

1039.03 37.80 
111.43 38.40 
121.47 36.70 
957.69 37.80 
937.58 48.30 
101.16 56.50 
108.69 44.10 
876.57 44.00 
861.64 45.20 
93.33 44.00 
99.35 54.00 

812.83 62.10 
1039.03 326.40 
111.43 312.50 
121.47 309.30 
957.69 313.50 

1039.03 408.30 
111.43 494.10 
121.47 371.60 
957.69 357.60 

1039.03 356.60 
111.43 357.70 
121.47 449.90 

nt according to EN1

Aσ0.2 (kN) Nult,

36.0 31
36.0 33
36.0 36
36.0 287
48.0 375
60.0 40
48.0 43
48.0 350
48.0 430
48.0 46
64.0 49
80.0 406

288.0 31
288.0 33
288.0 36
288.0 287
384.0 31
480.0 33
360.0 36
360.0 287
360.0 31
360.0 33
480.0 36

49 (51) 

993-1-4 

EN (kN) 
Nult,num/
Aσ0.2 

N
A

1.71 0.9936 
3.43 1.0500 
6.44 0.9167 
7.31 1.0885 
5.03 0.9373 

0.47 1.0063 
3.48 0.8438 
0.63 1.0633 
0.82 0.8963 

6.66 0.9417 
9.68 0.7763 
6.42 1.0294 
1.71 1.0322 

3.43 1.0500 
6.44 0.9188 
7.31 1.1333 
1.71 0.9933 

3.43 1.0667 
6.44 0.9167 
7.31 1.0851 
1.71 0.9906 

3.43 1.0194 
6.44 0.9417 

Nult,EN/ 
Aσ0.2 

Nult,num/ 
Nult,EN 

0.8659 1.1475 
0.9286 1.1307 
0.7592 1.2074 
0.9976 1.0912 
0.7813 1.1996 
0.8430 1.1936 
0.6793 1.2420 
0.9131 1.1645 
0.7180 1.2483 
0.7777 1.2108 
0.6210 1.2501 
0.8467 1.2157 
0.8659 1.1921 
0.9286 1.1307 
0.7592 1.2101 
0.9976 1.1361 
0.8659 1.1472 
0.9286 1.1487 
0.7592 1.2074 
0.9976 1.0877 
0.8659 1.1440 
0.9286 1.0978 
0.7592 1.2403 
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Specimen

SF11003 
SF1301 
SF1401 
SF1803 
SF21003 
SF2301 
SF2401 
SF2803 
SF31003 
SF3301 
SF3401 
SF3803 
SN11003 
SN1301 
SN1401 
SN1803 
SN21003 
SN2301 
SN2401 
SN2803 
SN31003 
SN3301 
SN3401 

n ε c/tε 

 0.86 32.42
0.86 32.42
0.86 32.42
0.86 32.42

 0.75 37.43
0.67 41.85
0.86 44.00
0.86 44.00

 0.86 44.00
0.86 44.00
0.75 50.80
0.67 56.80

 0.86 28.56
0.86 28.56
0.86 28.56
0.86 28.56

 0.75 32.98
0.67 36.87
0.86 36.28
0.86 36.28

 0.86 36.28
0.86 36.28
0.75 41.89

Table 4.1

    

Section 
class 

Ne
Sec
cla

2 4 3
2 4 1
2 4 4
2 3 1
3 4 4
5 4 4
0 4 4
0 4 1
0 4 4
0 4 4
0 4 4
0 4 3
6 4 3
6 4 1
6 4 4
6 3 1
8 4 3
7 4 1
8 4 4
8 3 1
8 4 3
8 4 1
9 4 4

1 Stub column resu

 

ew 
ction 
ass 

ρ 

3 0.8659 
1 0.9286 
4 0.7592 
1 0.9976 
4 0.7813 
4 0.8430 
4 0.6793 
1 0.9131 
4 0.7180 
4 0.7777 
4 0.6210 
3 0.8467 
3 0.8659 
1 0.9286 
4 0.7592 
1 0.9976 
3 0.8659 
1 0.9286 
4 0.7592 
1 0.9976 
3 0.8659 
1 0.9286 
4 0.7592 

ults in SHS accordin

New 
ρ Aeff,to

(mm2

0.9656 1039.
1.0000 111.4
0.8285 121.4
1.0000 957.6
0.8562 937.5
0.9354 101.1
0.7313 108.6
1.0000 876.5
0.7779 861.6
0.8516 93.3
0.6625 99.3
0.9402 812.8
0.9656 1039.
1.0000 111.4
0.8285 121.4
1.0000 957.6
0.9656 1039.
1.0000 111.4
0.8285 121.4
1.0000 957.6
0.9656 1039.
1.0000 111.4
0.8285 121.4

 
ng to the new propo

 

ot 
2) 

New 
Aeff,tot 
(mm2) 

Nul

(k

03 1158.77 357
43 120.00 37
47 132.56 44
69 960.00 313
58 1027.38 449
16 112.25 48
69 117.01 54
57 960.00 408
64 933.48 537
3 102.20 56
5 106.00 62

83 902.64 494
03 1158.77 371

43 120.00 37
47 132.56 44
69 960.00 326
03 1158.77 357

43 120.00 38
47 132.56 44
69 960.00 312
03 1158.77 356

43 120.00 36
47 132.56 45

osal formulae by The

lt,num 
kN) 

Nult,EN 
(kN) 

7.70 311.71 
7.80 33.43 
4.00 36.44 
3.50 287.31 
9.90 375.03 

8.30 40.47 
4.00 43.48 
8.30 350.63 
7.80 430.82 

6.50 46.66 
2.10 49.68 
4.10 406.42 
1.60 311.71 

7.80 33.43 
4.10 36.44 
6.40 287.31 
7.60 311.71 

8.40 33.43 
4.00 36.44 
2.50 287.31 
6.60 311.71 

6.70 33.43 
5.20 36.44 

eofanous and Gard

50 (51) 

Nult,new 
(kN) Nult,num/ 

Nult,EN 

347.63 1.1475
36.00 1.1307
39.77 1.2074

288.00 1.0912
410.95 1.1996
44.90 1.1936
46.80 1.2420

384.00 1.1645
466.74 1.2483
51.10 1.2108
53.00 1.2501

451.32 1.2157
347.63 1.1921
36.00 1.1307
39.77 1.2101

288.00 1.1361
347.63 1.1472
36.00 1.1487
39.77 1.2074

288.00 1.0877
347.63 1.1440
36.00 1.0978
39.77 1.2403

ner (2008) 

Nult,num/ 
Nult,new 

 1.0290 
 1.0500 
 1.1064 
 1.0885 
 1.0948 
 1.0757 
 1.1538 
 1.0633 
 1.1522 
 1.1057 
 1.1716 
 1.0948 
 1.0690 
 1.0500 
 1.1089 
 1.1333 
 1.0287 
 1.0667 
 1.1064 
 1.0851 
 1.0258 
 1.0194 
 1.1366 
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1. Introduction 
 
Cold-formed steel members are widely used due to their high resistance/weight ratio compared with other structural 
materials. They usually show high height
be taken in the local instability phenomena. Web crippling is one of these instabilities, where the web buckles due to 
concentrated transverse forces.  
 
On the other hand, stainless steels show, in addition to good mechanical properties, an excellent corrosion 
resistance in most environments. The price of ferritic stainless steel is stable due to its low nickel content whilst still 
maintaining good mechanical properties. Consequently, ferritic stainless steel cold formed members have a 
promising future as an alternative to the aust
are based on carbon steel and do not cover ferritic stainless steel, new projects are being carried out to develop 
new design guidance taking into account stainless steel
techniques.  
 
This work is part of one of these projects, in which web crippling is studied for stainless steel members in general, 
and for ferritic ones in particular. The applicability of existing guidance has 
members, and a new expression has been proposed for this type of materials.
 
The new European research project
provide the necessary information to
aspects of the complex material behavior,
de Catalunya (UPC) and the VTT Technical
WP2, Structural performance of steel members
section stability (plate buckling and web crippling).
 

2. Literature review 
 
The theoretical analysis of web crippling under concentrated loading condition is very complex because it involves a 
large number of factors. Due to these difficulties, most of the research carried out mainly in carbon steel and 
therefore predictions, as well as rec
crippling design equations are empiric. 
 
The web crippling design rules in specifications for stainless steel structures are adopted from the specifications for 
carbon steel structures. The web crippling design rules for stainless steel can be found in EN 1993
stainless steel members, referred to the EN 1993
 
Other specifications for the design of cold
Civil Engineers Specification [3] and the Australian/New Zealand Standard 
 
Because of the many factors influencing the ultimate web crippling strength of cold
majority of research has been experi
behavior. Some authors have also created so
accurate and descriptive design methods for web crippling 
especially at the University of Eindhoven in the Netherlands 
design practice [7]. 
 
The current design methods are based on curve
main reasons [8]: "(i) the rules are strictly confined to the range for which they have been proven, and (ii) it is often 
difficult to ascertain the engineering reasoning behind the different parts of the rather complex equations". 
 

Structural Applications of Ferritic Stainless Steels

WP2.2b. Preliminary FEM study: Web crippling

formed steel members are widely used due to their high resistance/weight ratio compared with other structural 
materials. They usually show high height-to-thickness and width-to-thickness ratio values, so a special care has to 

tability phenomena. Web crippling is one of these instabilities, where the web buckles due to 

On the other hand, stainless steels show, in addition to good mechanical properties, an excellent corrosion 
nvironments. The price of ferritic stainless steel is stable due to its low nickel content whilst still 

maintaining good mechanical properties. Consequently, ferritic stainless steel cold formed members have a 
promising future as an alternative to the austenitic ones. As the existing design standards for cold formed members 
are based on carbon steel and do not cover ferritic stainless steel, new projects are being carried out to develop 

g into account stainless steel non-lineal behavior, in order to achieve efficient design 

This work is part of one of these projects, in which web crippling is studied for stainless steel members in general, 
and for ferritic ones in particular. The applicability of existing guidance has been checked for stainless steel 
members, and a new expression has been proposed for this type of materials. 

European research project "Structural Applications in Ferritic Stainless Steel"
ion to develop new design guidelines for the ferritic stainless steel

material behavior, as well as the cold formed element’s aspects
VTT Technical Research Centre of Finland are the partners responsible for

Structural performance of steel members. The tasks that are being developed 
section stability (plate buckling and web crippling). 

tical analysis of web crippling under concentrated loading condition is very complex because it involves a 
large number of factors. Due to these difficulties, most of the research carried out mainly in carbon steel and 
therefore predictions, as well as recommendations, have been based on experimental results. Hence, the web 
crippling design equations are empiric.  

The web crippling design rules in specifications for stainless steel structures are adopted from the specifications for 
The web crippling design rules for stainless steel can be found in EN 1993

stainless steel members, referred to the EN 1993-1-3 [2] for steel cold formed members.

Other specifications for the design of cold-formed stainless steel structural members are the American Society of 
and the Australian/New Zealand Standard [4]. 

Because of the many factors influencing the ultimate web crippling strength of cold
majority of research has been experimental, but also finite element modeling has been used to model web crippling 
behavior. Some authors have also created so-called mechanical models that could be used to produce more 
accurate and descriptive design methods for web crippling [5, 6]. Although promising results have been achieved, 
especially at the University of Eindhoven in the Netherlands [5, 6], these methods have n

The current design methods are based on curve-fitting of experimental results, which has been criticized for two 
: "(i) the rules are strictly confined to the range for which they have been proven, and (ii) it is often 

difficult to ascertain the engineering reasoning behind the different parts of the rather complex equations". 
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formed steel members are widely used due to their high resistance/weight ratio compared with other structural 
thickness ratio values, so a special care has to 

tability phenomena. Web crippling is one of these instabilities, where the web buckles due to 

On the other hand, stainless steels show, in addition to good mechanical properties, an excellent corrosion 
nvironments. The price of ferritic stainless steel is stable due to its low nickel content whilst still 

maintaining good mechanical properties. Consequently, ferritic stainless steel cold formed members have a 
enitic ones. As the existing design standards for cold formed members 

are based on carbon steel and do not cover ferritic stainless steel, new projects are being carried out to develop 
vior, in order to achieve efficient design 

This work is part of one of these projects, in which web crippling is studied for stainless steel members in general, 
been checked for stainless steel 

Steel" in progress, is intended to 
ferritic stainless steel involving both 

as the cold formed element’s aspects. The Universitat Politècnica 
the partners responsible for work on 

 at UPC focus mainly on cross 

tical analysis of web crippling under concentrated loading condition is very complex because it involves a 
large number of factors. Due to these difficulties, most of the research carried out mainly in carbon steel and 

ommendations, have been based on experimental results. Hence, the web 

The web crippling design rules in specifications for stainless steel structures are adopted from the specifications for 
The web crippling design rules for stainless steel can be found in EN 1993-1-4 [1] for 

for steel cold formed members. 

formed stainless steel structural members are the American Society of 

Because of the many factors influencing the ultimate web crippling strength of cold-formed steel sections, the 
mental, but also finite element modeling has been used to model web crippling 

called mechanical models that could be used to produce more 
. Although promising results have been achieved, 
, these methods have not yet been incorporated in 

fitting of experimental results, which has been criticized for two 
: "(i) the rules are strictly confined to the range for which they have been proven, and (ii) it is often 

difficult to ascertain the engineering reasoning behind the different parts of the rather complex equations".  
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A great amount studies involving web 
web crippling was conducted in Cornell University by Winter and Pian in 1946. Since then, several researchers 
have carried out comprehensive experimental studies on different s
 
A lack of studies involving web crippling strength of stainless steel comparing with carbon steel can be noticed. The
first web crippling studies carried out in stainless steel found in the literature were performed by Korvink et al. 
the Rand Afrikaans University.  
 
Other experimental investigations were carried out by Talj
austenitic stainless steel members analyzing the behavior of different cross sections and comparing experimental 
and numerical simulations with EN 1993
 
Since 2006, Zhou and Young have been carrying out amount of tests on cold formed stainless steel members 
subjected to web crippling [21, 24]. Using the tests, Zhou and Young 
through a combination of theoretical and empirical analysis for cold formed stainless steel RHS, SHS sections 
under web crippling.  
 
A review of all studies dealing with web crippling of cold
and Young can be founded in Zhou and Young 
 

3. Numerical model 
 
The Finite Element Method (FEM) is presented as 
web crippling, in which is important to conduct
allows the realization of numerous modeling
this study, numerical models have been carried
of a plug-in developed at VTT Technical
an easy definition of all the needed parameters.
 
The implemented web crippling tests
conditions. The parameters involved in these
of the metal plate that enters the load in the case
condition), and the dimensions of the studied cross section.
Figures 2 and 3 show the real configuration and model simplification for the two web crippling tests on the most 
important sections: under the load and at the support. 
 

Figure 1. Web crippling IOF and EOF tests analyzed
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A great amount studies involving web crippling strength of carbon steel have been carried out. The first research on 
web crippling was conducted in Cornell University by Winter and Pian in 1946. Since then, several researchers 
have carried out comprehensive experimental studies on different sections and types of loading 

A lack of studies involving web crippling strength of stainless steel comparing with carbon steel can be noticed. The
first web crippling studies carried out in stainless steel found in the literature were performed by Korvink et al. 

Other experimental investigations were carried out by Talja and Salmi [19] and Talja and Zilli [20] for cold worked 
austenitic stainless steel members analyzing the behavior of different cross sections and comparing experimental 
and numerical simulations with EN 1993-1-4 [1].  

Since 2006, Zhou and Young have been carrying out amount of tests on cold formed stainless steel members 
subjected to web crippling [21, 24]. Using the tests, Zhou and Young [25] proposed a new design procedure derived 
through a combination of theoretical and empirical analysis for cold formed stainless steel RHS, SHS sections 

A review of all studies dealing with web crippling of cold-formed stainless steel tubular sections performed by Zhou 
and Young can be founded in Zhou and Young [26]. 

) is presented as a powerful tool for analyzing complex phenomena
important to conduct experiments to gather information. 

modeling of these experimental tests with a far lower cost than
have been carried out using Abaqus finite element analysis program [27]

VTT Technical Research Centre of Finland. The plug-in genera
needed parameters. 

tests are the end one flange loading (EOF) and the interior one flange loading (IOF)
involved in these tests are: the element length, the bearing length of 

load in the case of internal loading, or the length of the support in the
of the studied cross section. Schemes of these tests are shown in Figure 1.

Figures 2 and 3 show the real configuration and model simplification for the two web crippling tests on the most 
important sections: under the load and at the support.  

Figure 1. Web crippling IOF and EOF tests analyzed 
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crippling strength of carbon steel have been carried out. The first research on 
web crippling was conducted in Cornell University by Winter and Pian in 1946. Since then, several researchers 

ections and types of loading [9–17].  

A lack of studies involving web crippling strength of stainless steel comparing with carbon steel can be noticed. The 
first web crippling studies carried out in stainless steel found in the literature were performed by Korvink et al. [18] in 

a and Salmi [19] and Talja and Zilli [20] for cold worked 
austenitic stainless steel members analyzing the behavior of different cross sections and comparing experimental 

Since 2006, Zhou and Young have been carrying out amount of tests on cold formed stainless steel members 
a new design procedure derived 

through a combination of theoretical and empirical analysis for cold formed stainless steel RHS, SHS sections 

formed stainless steel tubular sections performed by Zhou 

complex phenomena of instability as 
 The use of numerical models 

with a far lower cost than actual ones. In 
finite element analysis program [27], with the help 

generates the model and allows 

and the interior one flange loading (IOF) 
, the bearing length of (either the length 

of the support in the end loading 
are shown in Figure 1. 

Figures 2 and 3 show the real configuration and model simplification for the two web crippling tests on the most 
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Figure 2. Real configuration and model simplification under the load and at the support for IOF tests
 
 

Figure 3. Real configuration and model simplification under the load and at the support for EOF tests
 
 

In the case of internal support tests, interaction between the local transverse force and the bending moment has to 
be considered and for this comparison the M
measured moment resistance of the 4
shown on Figure 4. 

 

 
3.1. Material models 
 
Several material models have been developed during the last decades mostly originated from Ramberg
[28] law. Mirambell and Real [29] model was developed from Ramberg
hardening effect and is able to describe the m
Rasmussen’s study [20] extends Mirambell & Real model reducing its original six parameters to three. Gardner [31] 
proposed another modification of Mirambell & Real material model, where the sec
curve passes through 1,0% proof stress instead of ultimate stress. This approach can also include compressive 
behaviour. 
 
The material model used in the present study is based on Rasmussen’s modification [30] of Mirambell and Rea
model [29], which is also included in EN 1993
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Figure 2. Real configuration and model simplification under the load and at the support for IOF tests

 
Real configuration and model simplification under the load and at the support for EOF tests

In the case of internal support tests, interaction between the local transverse force and the bending moment has to 
be considered and for this comparison the MR moment resistance value is needed. This M
measured moment resistance of the 4-point-bending test moment. The configuration of the bending moment test is 

 
Figure 4. Bending moment test configuration 

Several material models have been developed during the last decades mostly originated from Ramberg
[28] law. Mirambell and Real [29] model was developed from Ramberg-Osgood formulation, including strain 
hardening effect and is able to describe the material behaviour more precisely for strains larger than 0,2%. 
Rasmussen’s study [20] extends Mirambell & Real model reducing its original six parameters to three. Gardner [31] 
proposed another modification of Mirambell & Real material model, where the sec
curve passes through 1,0% proof stress instead of ultimate stress. This approach can also include compressive 

The material model used in the present study is based on Rasmussen’s modification [30] of Mirambell and Rea
is also included in EN 1993-1-4, Annex C.  
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Figure 2. Real configuration and model simplification under the load and at the support for IOF tests 

 

Real configuration and model simplification under the load and at the support for EOF tests 

In the case of internal support tests, interaction between the local transverse force and the bending moment has to 
moment resistance value is needed. This MR value is taken as the 

bending test moment. The configuration of the bending moment test is 

Several material models have been developed during the last decades mostly originated from Ramberg-Osgood 
Osgood formulation, including strain 

aterial behaviour more precisely for strains larger than 0,2%. 
Rasmussen’s study [20] extends Mirambell & Real model reducing its original six parameters to three. Gardner [31] 
proposed another modification of Mirambell & Real material model, where the second part of Ramberg-Osgood 
curve passes through 1,0% proof stress instead of ultimate stress. This approach can also include compressive 

The material model used in the present study is based on Rasmussen’s modification [30] of Mirambell and Real 
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3.2. Transformation for Abaqus solver
 

According to the Abaqus documentation, nominal (engineering) stress is recalculated to true stress and nominal 
(engineering) strain to logarithmic (true) strain using following equations:

 

 
 
3.3. Element type 
 
Linear S4R and quadratic S9R5 elements are provided by Abaqus for cold
former ones are used in Rasmussen et al. [32] and Ellobody and Young [33] for their simple application and 
because they are also included in Abaq
as Jandera et al. [34], Rossi et al. [35] and Ashraf et al. [36] as slightly more accurate and much more robust. 
Quadratic elements also offer more flexibility when modeling round
have been chosen in this study.   
 
3.4. Mesh size 
 
For the definition of the number of elements
the greater number of elements employed,
implies (memory and computing time
between the accuracy of the results
goes through a convergence analysis
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3.2. Transformation for Abaqus solver 

documentation, nominal (engineering) stress is recalculated to true stress and nominal 
(engineering) strain to logarithmic (true) strain using following equations: 

Linear S4R and quadratic S9R5 elements are provided by Abaqus for cold-formed steel numerical simulations. The 
former ones are used in Rasmussen et al. [32] and Ellobody and Young [33] for their simple application and 
because they are also included in Abaqus/GUI interface, while the latter ones are preferred in recent studies such 
as Jandera et al. [34], Rossi et al. [35] and Ashraf et al. [36] as slightly more accurate and much more robust. 
Quadratic elements also offer more flexibility when modeling rounded corners avoiding large aspect ratios, so they 

For the definition of the number of elements to be used when modeling each of the elements,
elements employed, the better results are obtained. However, the computational cost 
computing time required) conducts to a study on the optimal mesh

accuracy of the results and resources spent in obtaining it. The method
convergence analysis, shown in Figure 2, from which it follows that the

Figure 5. Mesh convergence study 

Mesh convergence study
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   (Eq. 1) 

documentation, nominal (engineering) stress is recalculated to true stress and nominal 

   (Eq. 2) 

(Eq. 3) 

formed steel numerical simulations. The 
former ones are used in Rasmussen et al. [32] and Ellobody and Young [33] for their simple application and 

us/GUI interface, while the latter ones are preferred in recent studies such 
as Jandera et al. [34], Rossi et al. [35] and Ashraf et al. [36] as slightly more accurate and much more robust. 

ed corners avoiding large aspect ratios, so they 

the elements, it should be noted that 
However, the computational cost that this 

optimal mesh, reaching a compromise 
The method of obtaining the proper mesh 
it follows that the optimal mesh is one 
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3.5. Initial geometric imperfections
 
Geometric imperfections are present in all structural members, so they must be included in the numerical models. 
Local imperfections dominate the element 
as the elements to be analyzed are relatively short
imperfections have been neglected, focusing 
 
There are several ways of modeling geometrical imperfections. In case of simula
real initial imperfection data are inserted into a model either in form of the whole deformed geometry or as an 
amplification of an idealized imperfect shape. For the modeling of a cold
distribution is usually obtained from linear elastic analysis (LEA). In this case
simulated using the first buckling mode

As proposed in Theofanous and Gardner [37] three values of local imperfection amplitude were considered in the 
non-linear analyses: 1/10 and 1/100 of the cross sectional thickness and the imperfection amplitude obtained from 
the model of Dawson and Walker [38] as adapted by Gardne
defined by equation 4. 
 

)/·(023,0/ 2,00 crtw σσ=  

 

where w0 is the initial imperfection amplitude; t the plate thickness; 

elastic buckling stress of the plated elements, 
 
 
3.6. Numerical model simplification
 
Several simplifications have been made in the numerical model in order to increase the computational efficiency. 
These simplifications are: 
 

• Residual stresses from cold

• Enhanced corner properties are neglected.

• Rounded corners are neglected.
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3.5. Initial geometric imperfections 

Geometric imperfections are present in all structural members, so they must be included in the numerical models. 
element behavior for members with small length, as shown in

d are relatively short, and due to the local nature of the
, focusing the study on the influence of the local ones

There are several ways of modeling geometrical imperfections. In case of simulating the experiment, usually the 
real initial imperfection data are inserted into a model either in form of the whole deformed geometry or as an 
amplification of an idealized imperfect shape. For the modeling of a cold-formed member, the idealized imperfec
distribution is usually obtained from linear elastic analysis (LEA). In this case the

the first buckling mode, as shown in Figure 6.  

 
 

Figure 6. First buckling mode for a RHS 

 
 

and Gardner [37] three values of local imperfection amplitude were considered in the 
linear analyses: 1/10 and 1/100 of the cross sectional thickness and the imperfection amplitude obtained from 

the model of Dawson and Walker [38] as adapted by Gardner and Nethercot [39] for stainless steels, which is 

is the initial imperfection amplitude; t the plate thickness; 2,0σ  the material 0.2% proof stress and 

elastic buckling stress of the plated elements, assuming simply supported conditions. 

3.6. Numerical model simplification 

Several simplifications have been made in the numerical model in order to increase the computational efficiency. 

Residual stresses from cold-working and press-braking are not included. 

Enhanced corner properties are neglected. 

Rounded corners are neglected. 
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Geometric imperfections are present in all structural members, so they must be included in the numerical models. 
small length, as shown in Figure 5. Therefore, 

local nature of the studied phenomenon, global 
local ones. 

ting the experiment, usually the 
real initial imperfection data are inserted into a model either in form of the whole deformed geometry or as an 

formed member, the idealized imperfection 
the geometric imperfections are 

and Gardner [37] three values of local imperfection amplitude were considered in the 
linear analyses: 1/10 and 1/100 of the cross sectional thickness and the imperfection amplitude obtained from 

r and Nethercot [39] for stainless steels, which is 

(Eq. 4) 

material 0.2% proof stress and 
crσ  the 

 

Several simplifications have been made in the numerical model in order to increase the computational efficiency. 
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3.7. Numerical model calibration 
 

3.7.1 General 
 
To ensure that the numerical results
experimental test results on certain elements
 
As there have been no experimental tests, results have been extracted from
authors. The calibration was based on the work of Gardner et al. [40] for RHS and SHS sections of austenitic 
stainless steel and interior loading condition and on the results of an experimental campaign carried out by 
for ferritic stainless steel top hat sections, under interior and end loading conditions.
 
The studied sections in the calibration
shows the mechanical properties of these eleme
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RHS 140x60x3 

Table 1. Geometrical dimensions used in FE calibration
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TH_15_IS 

TH_20_IS 

TH_30_IS 

SHS 100x100x3

RHS 120x80x3

RHS 140x60x3

Table 2. Mechanical properties used in FE calibration
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results are representative, the model should be calibrated
on certain elements and the ultimate loads predicted by the numerical models.

As there have been no experimental tests, results have been extracted from published tests carried out by other 
authors. The calibration was based on the work of Gardner et al. [40] for RHS and SHS sections of austenitic 
stainless steel and interior loading condition and on the results of an experimental campaign carried out by 
for ferritic stainless steel top hat sections, under interior and end loading conditions. 

studied sections in the calibration of the numerical model are shown in Table 1
shows the mechanical properties of these elements. 

 

b 
(mm) 

h 
(mm) 

c 
(mm) 

R 
(mm) 

r 
(mm) 

rm 
(mm) (mm)

80.04 80 - 5.2 2.9 4.03 1.97

72.85 71.05 24.15 2.5 0.8 1.65 0.99

70.47 70.84 24.03 3 0.8 1.9 1.53

69.65 70.52 23.98 4 0.8 2.4 1.99

68.86 69.39 23.74 6.5 2 4.25 2.94

79.64 80.1 - 5.2 2.9 4.09 1.95

72.89 71.09 24.17 2.5 0.8 1.65 0.99

70.56 70.73 24.11 3 0.8 1.9 1.53

69.72 70.08 24.02 4 0.8 2.4 1.99

68.86 69.95 23.82 6.5 2 4.25 2.94

100.1 100 - 5.57 2.5 4.04 3.07

79.8 120 - 7.07 4 5.54 3.07

60.4 139.9 - 7.58 4.5 6.04 3.08

Table 1. Geometrical dimensions used in FE calibration 

E (Mpa) σ0.2 (Mpa) n σu m εu 

195592 502 6.1 527 4.07 0.0123

199968 359 23.1 479 1.46 0.017

191226 322 26.1 475 1.21 0.016

192780 372 23 489 1.3 0.0164

180369 297 23.5 445 1.22 0.016

195592 502 6.1 527 4.07 0.0123

199968 359 23.1 479 1.46 0.017

191226 322 26.1 475 1.21 0.016

192780 372 23 489 1.3 0.0164

180369 297 23.5 445 1.22 0.016

SHS 100x100x3       

RHS 120x80x3       

RHS 140x60x3       

Table 2. Mechanical properties used in FE calibration 
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should be calibrated by comparing the 
the numerical models.  

published tests carried out by other 
authors. The calibration was based on the work of Gardner et al. [40] for RHS and SHS sections of austenitic 
stainless steel and interior loading condition and on the results of an experimental campaign carried out by VTT [41] 

Table 1 and Figure 6, and Table 2 

t 
(mm) 

L 
(mm) 

Source 

1.97 400 [41] 

0.99 399 [41] 

1.53 399 [41] 

1.99 399 [41] 

2.94 399 [41] 

1.95 401 [41] 

0.99 399 [41] 

1.53 399 [41] 

1.99 399 [41] 

2.94 399 [41] 

3.07 800 [40] 

3.07 800 [40] 

3.08 800 [40] 

Type 

0.0123 Ferritic 

0.017 Ferritic 

0.016 Ferritic 

0.0164 Ferritic 

0.016 Ferritic 

0.0123 Ferritic 

0.017 Ferritic 

0.016 Ferritic 

0.0164 Ferritic 

0.016 Ferritic 

Austhenitic 

Austhenitic 

Austhenitic 
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3.7.2 Eurocode 3-1-3 
 

EN 1993-1-3 [2] does not have specific expressions for
[42] proposal; parameters defined for
for web, for cross sections with two or more webs, is given by:
 

( )(2

, ,0·/1,01·ybRdw trEftR α −=

 

where α is a constant coefficient, t is the web thickness, r is the internal corner radii, E is the material Young’s 
modulus, fyb is the material 0.2% proof strength
depend on the section type, as well as 
1993-1-3 [2] (Category 1 for end loading and Category 2 for interior loading). So, assuming that the angle of the 
web relative to the flanges is 90 degrees the loca
 
For interior loading in RHS and SHS
 

(2

, /1,01·51,0 ybRdw trEftR −=

 
For exterior loading in RHS and SHS 
 

(2

, /1,01·255,0 ybRdw rEftR −=

 
For interior loading in top hat sections 
 

(2

, /1,01·39,0 ybRdw trEftR −=

 
For end loading in top hat sections 
 

(2

, /1,01·194,0 ybRdw rEftR −=

 

Cold-formed members subjected to interior loading are more vulnerable because of the combined bending and 
concentrated load. Hence, interaction must be taken into account by means of (Eq. 
of Eurocode 3, Part 1-3. It must be point out that assessing interaction in one profile requires results from the IOF 
test and the 4-point bending test. 
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Figure 6. Hollow and hat sections. 

specific expressions for rectangular hollow sections, so 
proposal; parameters defined for sheeting have been used in these cases. Thus

for web, for cross sections with two or more webs, is given by: 

) ( )( ) 1

2
/90/4,2·/02,05, Ma tl γφ++  

 is a constant coefficient, t is the web thickness, r is the internal corner radii, E is the material Young’s 
is the material 0.2% proof strength, and la is the effective bearing length

, as well as the loading condition, through the different categories showed in
(Category 1 for end loading and Category 2 for interior loading). So, assuming that the angle of the 

web relative to the flanges is 90 degrees the local transverse resistance Rw,Rd per web of each cross section are:

For interior loading in RHS and SHS 

)( ) 1//02,05,0· Ma tlt γ+  

)( ) 1//02,05,0·/ Ma tlt γ+  

)( ) 1//02,05,0· Ma tlt γ+  

)( ) 1//02,05,0·/ Ma tlt γ+  

formed members subjected to interior loading are more vulnerable because of the combined bending and 
concentrated load. Hence, interaction must be taken into account by means of (Eq. 10

be point out that assessing interaction in one profile requires results from the IOF 
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, so following the Talja and Salmi 
Thus, the web crippling resistance 

(Eq. 5) 

 is a constant coefficient, t is the web thickness, r is the internal corner radii, E is the material Young’s 
bearing length. Both α and la parameters 

the different categories showed in tables in EN 
(Category 1 for end loading and Category 2 for interior loading). So, assuming that the angle of the 

per web of each cross section are: 

(Eq. 6) 

(Eq. 7) 

(Eq. 8) 

(Eq. 9) 

formed members subjected to interior loading are more vulnerable because of the combined bending and 
10) as specified in 6.1.11 article 

be point out that assessing interaction in one profile requires results from the IOF 

c 

t 

117 (179)



    

 
���

��,��
�
���

��,��

	 1.25 

    
���

��,��
	 1 

 

Where FEd and MEd are the IOF ultimate 
the web crippling resistance according to (Eq.6 and 7) and M
ultimate bending moment in the 4-
added bending moment in the IOF test as a function of the applied load (M
crippling resistance is set as (Eq. 11
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IOF

Rdw

EdBDWC

M

l

R

FF

,, ·4

1

25,1

+

==−

 

Members subjected to an end loading condition do not need to satisfy this interaction condition, but some 
considerations need to be taken into account before comparing the experimental data obtained from [41] and the 
load values given in the numerical analysis. Measured fo
outputs are ultimate applied loads, so a simple transformation needs to be done to compare these two results. 
Remembering the EOF test configuration shown in Figure 1, and imposing moment equili
between the applied load, P, and the reaction, F
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−
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3.7.3 FE assessment and results 
 

Tables 3 and 4 and Figures 7 and 8 summarize experimental, analytical and numerical results.
RWC,exp and MBD,exp corresponds to experimental results from Gardner et al. [40] and Talja [41]. The former is the 
ultimate resistant load measured in the web crippling test while the latter is the ultimate bending resistance in the 4
point bending test. Rw,Rd is the web crippling resistance obtained from applying (Eq.6
crippling strength considering interaction with bending moment according to (Eq. 
Fu,num, are presented by considering three different amplitudes of the initial imperfection as specified in 3.5.
 

Specimen 
RWC,exp

(kN)

SHS_ES 26.76
TH_10_ES 7.18
TH_15_ES 15.04
TH_20_ES 25.92
TH_30_ES 42.07

SHS_IS 43.92
TH_10_IS 10 
TH_15_IS 20.73
TH_20_IS 34.84
TH_30_IS 55.01
SHS 100x100x3 107.1
RHS 120x80x3 108.3
RHS 140x60x3 107.5

Table 3. Experimental, numerical and predicted results
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are the IOF ultimate resistance and the produced added bending moment respectively, R
the web crippling resistance according to (Eq.6 and 7) and Mc,Rd is the bending resistance that corresponds to the 

-point bending test (MBD,exp) of the same profile. Substituting the value of the 
added bending moment in the IOF test as a function of the applied load (MEd=FEd·lIOF

1) shows. 

 

to an end loading condition do not need to satisfy this interaction condition, but some 
considerations need to be taken into account before comparing the experimental data obtained from [41] and the 
load values given in the numerical analysis. Measured forces in the FE calibration tests are reactions, while plug
outputs are ultimate applied loads, so a simple transformation needs to be done to compare these two results. 
Remembering the EOF test configuration shown in Figure 1, and imposing moment equili
between the applied load, P, and the reaction, FR, can be obtained:  

)/1·(
)

LeP
e

−=  

Tables 3 and 4 and Figures 7 and 8 summarize experimental, analytical and numerical results.
corresponds to experimental results from Gardner et al. [40] and Talja [41]. The former is the 

ultimate resistant load measured in the web crippling test while the latter is the ultimate bending resistance in the 4
is the web crippling resistance obtained from applying (Eq.6

crippling strength considering interaction with bending moment according to (Eq. 10
sidering three different amplitudes of the initial imperfection as specified in 3.5.

exp 
(kN) 

MBD,exp 
(kNm) 

Rw,Rd 
(kN) 

FWC-BD 
(kN) 

Fu,num

t/10 

26.76 - 13.97 - 68,5 
7.18 - 2.78 - 8.62 

15.04 - 5.69 - 19.25 
25.92 - 9.95 - 33.32 
42.07 - 17.12 - 49.22 

43.92 8.09 34.28 33.18 37.74 
 1.57 7.16 6.81 8.42 

20.73 3.07 14.28 13.52 17.87 
34.84 5.03 24.59 23.01 29.19 
55.01 6.44 41.42 35.90 42.07 
107.1 23.3 91.26 65.77 99.96 101.23
108.3 29.8 93.08 73.78 96.6 
107.5 34.6 92.85 77.21 94.95 

Table 3. Experimental, numerical and predicted results 
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(Eq. 10) 

and the produced added bending moment respectively, Rw,Rd is 
is the bending resistance that corresponds to the 

same profile. Substituting the value of the 

IOF/4), the reduced ultimate web 

(Eq. 11) 

to an end loading condition do not need to satisfy this interaction condition, but some 
considerations need to be taken into account before comparing the experimental data obtained from [41] and the 

rces in the FE calibration tests are reactions, while plug-in 
outputs are ultimate applied loads, so a simple transformation needs to be done to compare these two results. 
Remembering the EOF test configuration shown in Figure 1, and imposing moment equilibrium, the relation 

(Eq. 12) 

Tables 3 and 4 and Figures 7 and 8 summarize experimental, analytical and numerical results. Both abridgements 
corresponds to experimental results from Gardner et al. [40] and Talja [41]. The former is the 

ultimate resistant load measured in the web crippling test while the latter is the ultimate bending resistance in the 4-
is the web crippling resistance obtained from applying (Eq.6-9) whereas FWC-BD is the web 

10). Finally, numerical results, 
sidering three different amplitudes of the initial imperfection as specified in 3.5. 

u,num (kN) 
w0 t/100 

68,52 68,52 
8.61 8.59 
19.1 19.07 
32.93 32.9 
48.64 48.66 

37.33 37.02 
8.42 8.43 
18.02 18.04 
29.49 29.51 
42.41 42.44 

101.23 101.35 
96.21 96.42 
95.47 95.69 
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FEM calibration. VTT internal support specimens
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SHS_IS 
TH_10_IS 
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TH_30_IS 
SHS 100x100x3
RHS 120x80x3
RHS 140x60x3

Table 4. Experimental, numerical and predicted results

Figure 7. Local transverse resistances R

 
 
 

Figure 8.Ultimate loads
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FEM calibration. VTT internal support specimens

RWC,exp/
Rw,Rd 

RWC,exp/ 
FWC-BD 

Fu,num/RWC,exp

t/10 w0 

1.92 - 1,82 1,82 
 2.58 - 0.852 0.851 
 2.64 - 0.909 0.902 
 2.6 - 0.913 0.902 
 2.46 - 0.831 0.821 

1.28 1.033 0.859 0.850 
1.37 1.051 0.842 0.842 
1.45 1.056 0.862 0.869 
1.42 1.069 0.838 0.846 
1.33 1.154 0.765 0.771 

SHS 100x100x3 1.17 1.388 0.933 0.945 
RHS 120x80x3 1.16 1.262 0.891 0.888 
RHS 140x60x3 1.16 1.203 0.883 0.888 

Table 4. Experimental, numerical and predicted results 

Local transverse resistances Rw,Rd for SHS and RHS, internal support test
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.Ultimate loads for SHS and top hat sections, internal support test
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FEM calibration. VTT internal support specimens

t/10

t/100

wo

Eurocódigo

Experimental

WC,exp 
t/100 

1,82 
0.849 
0.900 
0.901 
0.821 

0.843 
0.843 
0.870 
0.847 
0.771 
0.946 
0.890 
0.890 

 
, internal support test 

sections, internal support test 

FEM calibration. Gardner internal support specimens
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t/100

wo
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Figure 9.Ultimate

 
The numerical results are similar to
simulations in Gardner et al. [40]. 
information provided in the different papers, so it was no possible to reproduce the tests exactly. The results 
obtained using the Eurocode proposal 
needed. 
 
Figures 10 and 11 show examples of
of a SHS section under end loading condition.

Figure 10. Deformed shape for a top hat section under internal loading condition.

Figure 11. Deformed shape for a SHS section under end loading condition
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Figure 9.Ultimate loads for SHS and top hat sections, end support test.

are similar to the experimentally obtained measurements and
]. The difference between predicted and test results are due to the lack of the 

information provided in the different papers, so it was no possible to reproduce the tests exactly. The results 
ned using the Eurocode proposal are different from experimental and numerical results, so a new analysis is 

of a top hat section model subjected to an internal loading condition and a model 
of a SHS section under end loading condition. 

 

Deformed shape for a top hat section under internal loading condition.
 

Figure 11. Deformed shape for a SHS section under end loading condition
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loads for SHS and top hat sections, end support test. 

the experimentally obtained measurements and to the original numerical 
difference between predicted and test results are due to the lack of the 

information provided in the different papers, so it was no possible to reproduce the tests exactly. The results 
different from experimental and numerical results, so a new analysis is 

a top hat section model subjected to an internal loading condition and a model 

 
Deformed shape for a top hat section under internal loading condition. 

 
Figure 11. Deformed shape for a SHS section under end loading condition. 
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4. Parametric study 
 
Once validated the numerical model
local transverse resistance Rw,Rd. This
internal loading and external loading.
(rectangular and square hollow sections
 
The influence of the stainless steel grade and the different parameters
EN 1993-1-3 [2] will be analyzed: cross sectional thickness
concentrated load is applied and the considered amplitude of
 
4.1. Cross sections 
 
The studied sections are the ones defined in Figure
thicknesses of 3 mm and 1.5 mm each.
 

Section 
RHS  100x80xt 
SHS   80x80xt 

SHS  100x100xt 
Hat 80x80x30xt 

Table 3. Geometrical characteristics of the cross

The member length, the bearing length, the support length and the eccentricity of the applied load of both IOF and 
EOF are summarized in Table 6 following 
 

 
For the fundamental case of IOF test, interaction with bending moment must be taken into account, therefore the 
four considered sections were also subjected to a 4
moment strength. Loads were appli
Figure 4 shows. Simulations were carried out according to Hradil [44] using S4R shell elements with a distance 
between nodes equal to 5mm along flat section parts. Rounded corners we

4.2. Materials 
 
The parametric study will analyze 6 different types of
summarized in Table 7. These are the same materials used by Hradil
walled ferritic stainless steel members. The first group of materials, group N, represents the ferri
grade 430 (Figure 12). The difference in non
austenitic steels with low n values while N3 represents materials similar to carbon steel with high n values. The 
second group, F materials, studies the effect of increased strength due to cold
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numerical model, the effect of different parameters will be analyzed in
This parametric study has been performed for the two

internal loading and external loading. For each loading condition 3 different types of
hollow sections, and top hat sections). 

of the stainless steel grade and the different parameters defining the
: cross sectional thickness, the internal corner radii

concentrated load is applied and the considered amplitude of the local geometrical imperfections.

the ones defined in Figure 6, but with different geometrical 
each. Table 3 shows the values defining the analyzed geometries.

Designation a (mm) b (mm) 
S1 80 100 
S2 80 80 
S3 100 100 
S4 80 80 

Table 3. Geometrical characteristics of the cross-sections used in the parametric study

 
The member length, the bearing length, the support length and the eccentricity of the applied load of both IOF and 
EOF are summarized in Table 6 following according to Figure 1 nomenclature. 

 IOF EOF 

L (mm) 350 350 
ssa (mm) 50 25 
ssb (mm) 50 50 
ssL (mm) 25 50 
e (mm) - 75 

Table 6. Web crippling test configuration 

For the fundamental case of IOF test, interaction with bending moment must be taken into account, therefore the 
four considered sections were also subjected to a 4-point bending test in order to obtain the ultimate bending 
moment strength. Loads were applied at 1/3 and 2/3 of the total member length which was fixed at 1000mm as 
Figure 4 shows. Simulations were carried out according to Hradil [44] using S4R shell elements with a distance 
between nodes equal to 5mm along flat section parts. Rounded corners were modeled with 3 segments.

 

The parametric study will analyze 6 different types of ferritic stainless steels, whose main characteristics are 
. These are the same materials used by Hradil et al. [43] analyzing the global stability of thin

walled ferritic stainless steel members. The first group of materials, group N, represents the ferri
). The difference in non-linear parameter n was studied in this group, where N1 is close to 

austenitic steels with low n values while N3 represents materials similar to carbon steel with high n values. The 
second group, F materials, studies the effect of increased strength due to cold-working typical for grade 3Cr12.
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analyzed in the determination of the 
two defined loading conditions, 

types of cross sections will be studied 

defining the local transverse resistance in 
internal corner radii, the length over which the 

imperfections. 

geometrical dimensions, and with 
the analyzed geometries. 

c (mm) r (mm) 
- 6 
- 5 
- 2.5 

30 5 
sections used in the parametric study. 

The member length, the bearing length, the support length and the eccentricity of the applied load of both IOF and 

For the fundamental case of IOF test, interaction with bending moment must be taken into account, therefore the 
point bending test in order to obtain the ultimate bending 

ed at 1/3 and 2/3 of the total member length which was fixed at 1000mm as 
Figure 4 shows. Simulations were carried out according to Hradil [44] using S4R shell elements with a distance 

re modeled with 3 segments. 

stainless steels, whose main characteristics are 
et al. [43] analyzing the global stability of thin-

walled ferritic stainless steel members. The first group of materials, group N, represents the ferritic grades similar to 
s group, where N1 is close to 

austenitic steels with low n values while N3 represents materials similar to carbon steel with high n values. The 
working typical for grade 3Cr12.  
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4.3. Initial geometrical imperfections
 
Imperfections have been introduced
its effect on the determination of the ultimate loads. Amplitude 
been eliminated from the analysis. 
 
4.4. Numerical results 
 
More than 200 web crippling models
expression for determining the local transverse resistance
stainless steel members will be corroborated from these
 
4.4.1 Internal support test 
 
Tables 8-12 shows the results for the internal support tests simulation in sections S1, S2, S3 and S4. These results 
are also plotted in next figures 13 to 
 

Local transverse resistances R
Thickness and 
amplitude (mm) 

t=
3 

m
m

 w0 
t/10 

EN 1993-1-3 

t=
1.

5 
m

m
 w0 

t/10 
EN 1993-1-3 

Table 8. Local transverse resistances R

N material group. 
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fy = 300 MPa, F1

fy = 400 MPa, F2

fy = 500 MPa, F3

E0 (GPa) σ0.2 (MPa) n σu (MPa) m εu

200 300 5 600 2.75 0.50
200 300 10 600 2.75 0.50
200 300 25 600 2.75 0.50
200 300 10 420 3.50 0.29
200 400 10 560 3.50 0.29
200 500 10 700 3.50 0.29

Table 7. Material properties for the parametric study. 

Figure 12. Different types of stainless steel studied. 

4.3. Initial geometrical imperfections 

have been introduced as the first buckling modes, with two different amplitudes
on the determination of the ultimate loads. Amplitude t/100 presents the same order as w

models have been conducted in the parametric study. 
expression for determining the local transverse resistance proposed in EN 1993-1

corroborated from these results. 

shows the results for the internal support tests simulation in sections S1, S2, S3 and S4. These results 
to 22. 

Local transverse resistances Rw,Rd (kN) S1 

N1 N2 N3 F1 

55.47 55.00 53.70 49.13 
55.29 54.82 53.52 48.98 
56.67 56.67 56.67 56.67 
16.07 15.94 15.57 14.54 
16.06 15.93 15.56 14.54 
15.57 15.57 15.57 15.57 

 
Local transverse resistances Rw,Rd for internal support test, section S1

F material group.
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0.02 0.03

ε

u 
50 
50 
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29 
29 
29 

 
 
 
 
 
 
 
 

 
 
 
 
 
 

amplitudes (w0 and t/10) to study 
the same order as w0, and then it has 

have been conducted in the parametric study. The applicability of the 
1-3 [2] for cold formed ferritic 

shows the results for the internal support tests simulation in sections S1, S2, S3 and S4. These results 

F2 F3 

64.40 79.24 
64.22 79.04 
65.44 73.16 
18.91 23.13 
18.90 23.13 
17.98 20.10 

internal support test, section S1 

F material group. 
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Figure 13. Local transverse resistances R

 
 

 

Figure 14. Local transverse resistances R

 
 

Local transverse resistances R
Thickness and 
amplitude (mm) 
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Table 9. Local transverse resistances R
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Local transverse resistances Rw,Rd for internal support test, section S1, t=3mm

 
Local transverse resistances Rw,Rd for internal support test, section S1, t=1.

Local transverse resistances Rw,Rd (kN) S2 

N1 N2 N3 F1 F2

50.45 50.62 49.88 47.30 61.
50.05 50.20 49.45 46.89 60.
57.60 57.60 57.6 57.6 66.
14.39 14.34 14.10 13.32 17.
14.38 14.34 14.08 13.30 17.1
15.93 15.93 15.93 15.93 18.

 
Local transverse resistances Rw,Rd for internal support test, section S2

  N2   N3              F1    F2 F3 

  N2   N3              F1    F2 F3 
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internal support test, section S1, t=3mm 

 

l support test, section S1, t=1.5mm 

F2 F3 

61.20 74.32 
60.43 73.76 
66.52 74.37 
17.17 20.86 
17.15 20.85 
18.39 20.56 

internal support test, section S2 

Amplitud wo

Amplitud t/10

Eurocódigo

Amplitud wo

Amplitud t/10

Eurocódigo
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Figure 15. Local transverse resistances R

 

 
Figure 16. Local transverse resistances R

 
It is important to note that S3 internal members were modelled before the calibration tests were carried out, so they 
were tested using the general internal test provided by
new model-tests for top hat sections, so the model could reproduce the real load configuration.
 
As in this report it is only shown the preliminary FEM study, results obtained by the old ver
kept, but the need of obtaining more accurate results is also highlighted for further research work, also for the 
calibration of the definitive version of the proposed new expression.
 
 

Local transverse resistances R
Thickness and 
amplitude (mm) 

t=
3 

m
m

 w0 
t/10 

EN 1993-1-3 

t=
1.

5 
m

m
 w0 

t/10 
EN 1993-1-3 

Table 10. Local transverse resistances R
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Local transverse resistances Rw,Rd for internal support test, section S2, t=3mm

Local transverse resistances Rw,Rd for internal support test, section S2, t=1.

It is important to note that S3 internal members were modelled before the calibration tests were carried out, so they 
were tested using the general internal test provided by the plug-in. Those calibration tests leaded to the definition of 

tests for top hat sections, so the model could reproduce the real load configuration.

As in this report it is only shown the preliminary FEM study, results obtained by the old ver
kept, but the need of obtaining more accurate results is also highlighted for further research work, also for the 
calibration of the definitive version of the proposed new expression. 

Local transverse resistances Rw,Rd (kN) S3 

N1 N2 N3 F1 

49.85 49.99 49.22 42.59 55.
49.47 49.61 48.87 42.23 60.
44.16 44.16 44.16 44.16 50.
14.37 14.32 14.06 13.28 17.
14.36 14.30 14.05 13.75 17.
12.21 12.21 12.21 12.21 14

 
Local transverse resistances Rw,Rd for internal support test, section S3

t = 3 mm

  N2   N3              F1    F2 F3 

  N2   N3              F1    F2 F3 
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internal support test, section S2, t=3mm 

 

l support test, section S2, t=1.5mm 

It is important to note that S3 internal members were modelled before the calibration tests were carried out, so they 
in. Those calibration tests leaded to the definition of 

tests for top hat sections, so the model could reproduce the real load configuration. 

As in this report it is only shown the preliminary FEM study, results obtained by the old version of the plug-in were 
kept, but the need of obtaining more accurate results is also highlighted for further research work, also for the 

F2 F3 

55.27 73.16 
60.04 72.67 
50.99 57.01 
17.16 20.80 
17.15 20.79 
14.10 15.76 

internal support test, section S3 
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Figure 17. Local transverse resistances R

 
 

Figure 18. Local transverse resistances R

 
New numerical models have been carried out using the new test configuration for top hat sections subjected to 
internal loading condition. Both calibration and parametric studies have shown that the imperfection amplitude used 
in the models has no influence on the estimated ultimate load so the new models were conducted for a single 
imperfection amplitude. New results are shown below.
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Table 11. Local transverse resistances R
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Table 12. Local transverse resistances R
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Local transverse resistances Rw,Rd for internal support test, section S3, t=3mm

Local transverse resistances Rw,Rd for internal support test, sectio

New numerical models have been carried out using the new test configuration for top hat sections subjected to 
internal loading condition. Both calibration and parametric studies have shown that the imperfection amplitude used 

on the estimated ultimate load so the new models were conducted for a single 
imperfection amplitude. New results are shown below. 

Local transverse resistances Rw,Rd (kN) S3 

N1 N2 N3 F1 

47.31 46.92 45.85 41.75 54.
37.56 37.43 36.74 36.99 44.
13.35 13.26 12.97 12.09 15.
11.24 11.18 11.15 11.14 13.

 

Local transverse resistances Rw,Rd for internal support test, section S3 under 

Local transverse resistances Rw,Rd (kN) S4 

N1 N2 N3 F1 

71.63 69.89 69.97 68.90 86.
3 42.07 41.71 41.08 41.45 50.

17.49 17.68 17.76 17.42 21.
3 12.81 12.98 13.14 12.95 15.

 

Local transverse resistances Rw,Rd for internal support test, section S4
 

t = 3 mm

t = 1,5 mm
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section S3, t=3mm 

 
internal support test, section S3, t=1.5mm 

New numerical models have been carried out using the new test configuration for top hat sections subjected to 
internal loading condition. Both calibration and parametric studies have shown that the imperfection amplitude used 

on the estimated ultimate load so the new models were conducted for a single 

F2 F3 

54.77 67.61 
44.38 51.04 
15.73 19.29 
13.17 15.06 

internal support test, section S3 under the new test configuration. 

F2 F3 

86.40 104.64 
50.27 58.17 
21.80 25.19 
15.35 17.55 

internal support test, section S4 
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Figure 19. Local transverse resistances R

Figure 20. Local transverse resistances R

 
During the parametric analysis, a great influence of 
cross sections has been noticed. Then, an exhaustive analysis has been performed in a section S2 (80x80x3) with 
N1 and F1 stainless steels. Results are presented in table 9.
 

 
Radii (mm)

2.5 
3.5 
5 
6 

Table 13. Radii influence for 

 
A similar procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
the studied section has been the S4 (SHS 100x100xt), and F1 stainless steel. Results are presented in table 14 and 
figure 21. 
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Local transverse resistances Rw,Rd for internal support test, section S4, t=3mm

 

Local transverse resistances Rw,Rd for internal support test, section S4, t=1.

During the parametric analysis, a great influence of the internal corner radii in the local transverse resistance of the 
cross sections has been noticed. Then, an exhaustive analysis has been performed in a section S2 (80x80x3) with 
N1 and F1 stainless steels. Results are presented in table 9. 

Local transverse resistances Rw,Rd (kN)
Radii (mm) N1 F1 EN 1993

66.89 64.52 58.68
57.70 55.03 57.60
50.45 47.30 56.25
49.04 44.04 55.45

 
Table 13. Radii influence for local transverse resistances Rw,Rd in internal support tests

procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
the studied section has been the S4 (SHS 100x100xt), and F1 stainless steel. Results are presented in table 14 and 

N1   N2   N3              F1    F2 F3

   N3              F1    F2 F3 
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internal support test, section S4, t=3mm 

 
l support test, section S4, t=1.5mm 

the internal corner radii in the local transverse resistance of the 
cross sections has been noticed. Then, an exhaustive analysis has been performed in a section S2 (80x80x3) with 

(kN) 
EN 1993-1-3 

68 
0 

25 
45 

internal support tests 

procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
the studied section has been the S4 (SHS 100x100xt), and F1 stainless steel. Results are presented in table 14 and 
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t = 3 mm 
Numerical

EN 1993-

t = 1,5 mm 
Numerical

EN 1993-

Table 14. Nominal length of stiff bearing influence for 

Figure 21. Nominal length of stiff bearing influence for 

 
4.4.2 End support test 
 
The results derived from the analysis for the end support tests simulations are presented, in a similar form as for the 
internal support tests, in Tables 15 to 18 and figures 22 to 29. 
 

Thickness and 
amplitude (mm) 

t=
3 

m
m

 w0 
t/10 

EN 1993-1-3 

t=
1.

5 
m

m
 w0 

t/10 
EN 1993-1-3 

Table 15. Local transverse resistances R
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Local transverse resistances (kN) for different Ss (mm)
25 50 75 

Numerical 69.70 85.11 96.82
-1-3 53.35 69.61 70.91

Numerical 17.27 20.80 23.31
-1-3 15.16 18.53 21.11

 
Nominal length of stiff bearing influence for local transverse resistances Rw,Rd in internal support tests, S4 section

 

Figure 21. Nominal length of stiff bearing influence for local transverse resistances Rw,Rd in internal support tests, S4 section

The results derived from the analysis for the end support tests simulations are presented, in a similar form as for the 
internal support tests, in Tables 15 to 18 and figures 22 to 29.  

Local transverse resistances Rw,Rd (kN) S1 

N1 N2 N3 F1 

52.45 52.74 51.99 48.83 
52.28 52.57 51.82 48.70 
33.12 33.12 33.12 33.12 
12.70 12.72 12.47 12.06 
12.70 12.72 12.47 12.06 
8.75 8.75 8.75 8.75 

 
Local transverse resistances Rw,Rd for end support test, section S1

 

50 75 100 125

Longitud Aplicación de Carga Ss (mm)Bearing length 

tainless Steels 

Preliminary FEM study: Web crippling  

20 (31) 

transverse resistances (kN) for different Ss (mm) 
 100 

82 105.57 
91 77.33 
31 25.36 
11 23.29 

internal support tests, S4 section 

 
internal support tests, S4 section 

The results derived from the analysis for the end support tests simulations are presented, in a similar form as for the 

F2 F3 

63.02 76.52 
62.85 76.32 
38.24 42.75 
15.46 18.65 
15.46 18.65 
10.11 11.30 

end support test, section S1 

Numérico t = 3 mm

Eurocódigo t = 3 mm

Numérico t = 1,5 mm

Eurocódigo t = 1,5 mm
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Figure 22. Local transverse resistances R

 
 

Figure 23. Local transverse resistances R

Local transverse resistances R
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Table 16. Local transverse resistances R
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Local transverse resistances Rw,Rd for end support test, section S1, t=3mm

 
Local transverse resistances Rw,Rd for end support test, section S1, t=1.

 
 

Local transverse resistances Rw,Rd (kN) S2 

N1 N2 N3 F1 

59.20 59.44 58.59 54.97 
58.82 59.03 58.20 54.70 
33.66 33.66 33.66 33.66 
14.22 14.27 14.00 13.54 
14.21 14.25 13.99 13.53 
8.95 8.95 8.95 8.95 

 
Local transverse resistances Rw,Rd for end support test, section S2

 

t = 3 mm

t = 1,5 mm

N2  N3              F1  F2 F3

 N2  N3              F1  F2 F3
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end support test, section S1, t=3mm 

 

d support test, section S1, t=1.5mm 

F2 F3 

71.17 86.74 
70.84 86.27 
38.87 43.46 
17.32 20.89 
17.31 20.88 
10.34 11.56 

end support test, section S2 

Amplitud wo

Amplitud t/10

Eurocódigo

Amplitud wo

Amplitud t/10

Eurocódigo

F3 

F3 
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Figure 24. Local transverse resistances R

Figure 25. Local transverse resistances R
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Table 17. Local transverse resistances R
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Local transverse resistances Rw,Rd for end support test, section S2, t=3mm

 

Local transverse resistances Rw,Rd for end support test, section S2, t=1.

 
 

Local transverse resistances Rw,Rd (kN) S3 

N1 N2 N3 F1 F2

18.90 19.04 18.77 18.23 23.
18.66 18.79 18.53 18.01 23.
9.14 9.14 9.14 9.14 10.
4.11 4.12 4.05 3.97 5.
4.11 4.13 4.05 3.96 5.
2.43 2.43 2.43 2.43 2

 
Local transverse resistances Rw,Rd for end support test, section S3

. 

t = 3 mm

t = 1,5 mm

N2  N3              F1  F2 F3

N2  N3              F1  F2 F3
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end support test, section S2, t=3mm 

 
d support test, section S2, t=1.5mm 

F2 F3 

23.34 28.16 
23.05 28.16 
10.55 11.79 
5.06 6.09 
5.06 6.07 
2.8 3.13 

end support test, section S3 

Amplitud wo

Amplitud t/10

Eurocódigo

Amplitud wo

Eurocódigo

Amplitud t/10

F3 

F3 
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Figure 26. Local transverse resistances R

Figure 27. Local transverse resistances R
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Table 18. Local transverse resistances R
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Local transverse resistances Rw,Rd for end support test, section S3, t=3mm

 

Local transverse resistances Rw,Rd for end support test, section S3, t=1.

 
Local transverse resistances Rw,Rd (kN) S4 

N1 N2 N3 F1 F2

82.09 82.29 81.31 77.15 98
82.68 83.16 82.30 77.75 99.
35.56 35.56 35.56 35.56 41.
19.96 20.17 20.01 19.30 24
19.95 20.15 20.00 19.29 24.
9.60 9.60 9.60 9.60 10.

 
Local transverse resistances Rw,Rd for end support test, section S4

 

t = 3 mm

t = 1,5 mm

 N2  N3              F1  F2 

N2  N3              F1  F2 F3
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end support test, section S3, t=3mm 

 
d support test, section S3, t=1.5mm 

F2 F3 

98.9 119.52 
99.92 120.75 
41.06 45.91 
24.2 28.58 

24.18 28.57 
10.11 11.30 

end support test, section S4 

Amplitud wo

Amplitud t/10

Eurocódigo

Amplitud wo

Amplitud t/10

Eurocódigo

F3 

F3 
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 Figure 28. Local transverse resistances R

Figure 29. Local transverse resistances R

The influence of the internal corner radii in the local transverse resistance of the cross sections under end support 
test have been analyzed in the same way as for internal support tests. An exhaustive analysis has been performed 
in a section S2 (80x80x3) with N1 and F1 stainless stee
 

 
Radii (mm)

2.5 
3.5 
5 
6 

 
Table 19. Radii influence for 

 
A similar procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
the studied section has been the S4 (SHS 100x100xt), and F1 stainless steel. 
and Figure 30. 
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Local transverse resistances Rw,Rd for end support test, section S4, t=3mm

 

Local transverse resistances Rw,Rd for end support test, section S4, t=1.

 
corner radii in the local transverse resistance of the cross sections under end support 

test have been analyzed in the same way as for internal support tests. An exhaustive analysis has been performed 
in a section S2 (80x80x3) with N1 and F1 stainless steels. Results are presented in table 19.

Local transverse resistances Rw,Rd (kN)
Radii (mm) N1 F1 EN 1993

84.59 79.03 48.99
71.48 66.73 48.09
59.20 54.97 46.95
53.58 49.74 46.29

. Radii influence for local transverse resistances Rw,Rd in end support tests

A similar procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
the studied section has been the S4 (SHS 100x100xt), and F1 stainless steel. Results are presented in Table 20 

t = 3 mm

t = 1,5 mm

 N2  N3              F1  F2 

 N2  N3              F1  F2 F3
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end support test, section S4, t=3mm 

 
d support test, section S4, t=1.5mm 

corner radii in the local transverse resistance of the cross sections under end support 
test have been analyzed in the same way as for internal support tests. An exhaustive analysis has been performed 

ls. Results are presented in table 19. 

(kN) 
EN 1993-1-3 

99 
09 
95 
29 

support tests 

A similar procedure has been used for the analysis of the nominal length of stiff bearing, Ss influence. In this case, 
Results are presented in Table 20 

Amplitud wo

Eurocódigo

Amplitud t/10

Amplitud wo

Eurocódigo

Amplitud t/10

F3 

F3 
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t = 3 mm 
Numerical

EN 1993-

t = 1.5 mm 
Numerical

EN 1993-

Table 20. Nominal length of stiff bearing influence for 

Figure 30. Nominal length of stiff bearing influence for 

5. Comparative analysis 
 
The results obtained in the parametric study will be analyzed in this chapter, by comparing
provided by the numerical simulation with
existing expressions to ferritic stainless steels
sections under local transverse loads
 
5.1. Initial imperfection magnitude analysis
 
Table 21 and 22 show the relation
imperfection amplitudes analyzed for
respectively. 
 

 
 
 t = 3 mm 

N1 1.0032 
N2 1.0033 
N3 1.0033 
F1 1.0030 
F2 1.0028 
F3 1.0025 

 
Table 21. Ratios between ultimate loads for w

 
The influence of the used imperfection
loads are similar for amplitudes, wo

with one of the values of geometrical imperfection amplitude
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Local transverse resistances (kN) for different Ss (mm)
25 50 75 

Numerical 72.68 75.61 76.06
-1-3 49.00 49.00 49.00

Numerical 18.39 18.56 18.97
-1-3 13.39 13.39 13.39

 
. Nominal length of stiff bearing influence for local transverse resistances Rw,Rd in 

 

Nominal length of stiff bearing influence for local transverse resistances Rw,Rd in 

 

the parametric study will be analyzed in this chapter, by comparing
provided by the numerical simulation with the values predicted by EN 1993-1-3 [2], to study

ferritic stainless steels, as well as help on the understanding
transverse loads. 

1. Initial imperfection magnitude analysis 

the relation between the ultimate numerical loads obtained by
analyzed for different material groups, for internal support test

Rw,Rd(w0)/Rw,Rd(t/10)    ratios  
S1 S2 

t = 1,5 mm t = 3 mm t = 1,5 mm t = 3 mm
1.0006 1.008 1.0007 1.007
1.0006 1.008 1.0 1.007
1.0006 1.008 1.001 1.007

1.0 1.008 1.001 1.008
1.0005 1.012 1.001 0.920

1.0 1.007 1.0005 1.007

. Ratios between ultimate loads for w0 and t/10 imperfection magnitudes for internal support tests

used imperfection amplitude is negligible for both loading conditions

o and t/10. Accordingly, and for simplicity, the rest of the analysis will be done 
of geometrical imperfection amplitude, wo. 

50 75 100 125

Longitud Aplicación de Carga Ss (mm)

Numérico t = 3 mm

Eurocódigo t = 3 mm

Numérico t = 1,5 mm

Eurocódigo t = 1,5 mm

Bearing length 
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Local transverse resistances (kN) for different Ss (mm) 
 100 

06 77.07 
0 49.00 

97 19.38 
39 13.39 

in end support tests, S4 section 

 
in end support tests, S4 section 

the parametric study will be analyzed in this chapter, by comparing the ultimate loads 
to study the applicability of the 

help on the understanding of the behavior of cross 

obtained by Abaqus for the two 
, for internal support test and end support test 

S3 

t = 3 mm t = 1,5 mm 
007 1.0007 
007 1.0014 
007 1.0007 
008 0.966 
920 1.0006 
007 1.0005 

for internal support tests 

loading conditions, so they obtained ultimate 
for simplicity, the rest of the analysis will be done 

Numérico t = 3 mm

Eurocódigo t = 3 mm

Numérico t = 1,5 mm

Eurocódigo t = 1,5 mm

132 (179)



    

 
 
 S1

 t = 3 mm 
N1 1.0032 
N2 1.0032 
N3 1.0033 
F1 1.0026 
F2 1.0027 
F3 1.0026 

Table 22. Ratios between ultimate loads for w

 
5.2. Stainless-steel: material analysis
 
Relations between the numerical load and the one proportioned by EN 1993
for the studied cases for internal support tests (considering interaction with bending moment and without 
considering it) and end support tests. In this analysis it has been considered just one value of the local imperfection 
amplitude (wo), due to the conclusions obtained in 5.1.
 
In the following tables, each specimen has been labeled to identify it easily. The two first charac
material type of the specimens according to Table 7, the following two characters correspond to the section type as 
described in Table 5 and finally, the next symbols are the nominal thickness.
 

Specimen 
Fu,num/R

w,Rd 

N1S115 1.0322 
N1S215 0.9034 
N1S315 1.1767 
N1S415 1.0238 
N2S115 1.0238 
N2S215 0.9003 
N2S315 1.1726 
N2S415 1.0349 
N3S115 1.0001 
N3S215 0.8852 
N3S315 1.1514 
N3S415 1.0396 

Table 23. Ratios between numerical ultimate loads and EN 1993
loading condition without considering interaction with bending moment

 

Specimen 
Fu,num/ 
FWC-BD 

N1S115 1.064 
N1S215 0.996 
N1S315 1.093 
N1S415 1.058 
N2S115 1.052 
N2S215 0.994 
N2S315 1.086 
N2S415 1.062 
N3S115 1.023 
N3S215 0.974 
N3S315 1.062 
N3S415 1.059 

Table 24. Ratios between numerical ultimate loads and EN 1993

Structural Applications of Ferritic Stainless Steels
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Rw,Rd(w0)/Rw,Rd(t/10)    ratios) 
S1 S2 

t = 1,5 mm t = 3 mm t = 1,5 mm t = 3 mm
1.0 1.006 1.000 0.987
1.0 1.006 1.001 0.987
1.0 1.006 1.001 0.987
1.0 1.004 1.001 0.988
1.0 1.004 1.001 0.988
1.0 1.005 1.001 1.000

 

. Ratios between ultimate loads for w0 and t/10 imperfection magnitudes for end support tests

material analysis 

Relations between the numerical load and the one proportioned by EN 1993-1-3 [2] 
for the studied cases for internal support tests (considering interaction with bending moment and without 

end support tests. In this analysis it has been considered just one value of the local imperfection 
), due to the conclusions obtained in 5.1. 

In the following tables, each specimen has been labeled to identify it easily. The two first charac
material type of the specimens according to Table 7, the following two characters correspond to the section type as 
described in Table 5 and finally, the next symbols are the nominal thickness. 

Specimen 
Fu,num/R

w,Rd 
Specimen 

Fu,num/R

w,Rd 
Specimen

F1S115 0.9339 N1S130 0.9788 F1S130
F1S215 0.8362 N1S230 0.8757 F1S230
F1S315 1.0875 N1S330 1.1287 F1S330
F1S415 1.0197 N1S430 1.1771 F1S430
F2S115 1.0519 N2S130 0.9705 F2S130
F2S215 0.9335 N2S230 0.8787 F2S230
F2S315 1.2169 N2S330 1.1319 F2S330
F2S415 1.1051 N2S430 1.1485 F2S430
F3S115 1.1508 N3S130 0.9475 F3S130
F3S215 1.0144 N3S230 0.8659 F3S230
F3S315 1.3194 N3S330 1.1144 F3S330
F3S415 1.1422 N3S430 1.1498 F3S430

Ratios between numerical ultimate loads and EN 1993-1-3 predicted ones for internal
loading condition without considering interaction with bending moment

Specimen 
Fu,num/ 
FWC-BD 

Specimen 
Fu,num/ 
FWC-BD 

Specimen

F1S115 0.961 N1S130 1.070 F1S130
F1S215 0.922 N1S230 1.050 F1S230
F1S315 0.990 N1S330 1.071 F1S330
F1S415 1.047 N1S430 1.275 F1S430
F2S115 1.063 N2S130 1.066 F2S130
F2S215 1.004 N2S230 1.059 F2S230
F2S315 1.115 N2S330 1.062 F2S330
F2S415 1.119 N2S430 1.250 F2S430
F3S115 1.153 N3S130 1.050 F3S130
F3S215 1.081 N3S230 1.057 F3S230
F3S315 1.224 N3S330 1.038 F3S330
F3S415 1.142 N3S430 1.263 F3S430

Table 24. Ratios between numerical ultimate loads and EN 1993-1-3 predicted ones for internal 
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S3 

t = 3 mm t = 1,5 mm 
0.987 0.988 
0.987 1.000 
0.987 0.988 
0.988 0.999 
0.988 0.999 
1.000 0.998 

agnitudes for end support tests 

2] are shown on Tables 23 to 25 
for the studied cases for internal support tests (considering interaction with bending moment and without 

end support tests. In this analysis it has been considered just one value of the local imperfection 

In the following tables, each specimen has been labeled to identify it easily. The two first characters indicates the 
material type of the specimens according to Table 7, the following two characters correspond to the section type as 

Specimen 
Fu,num/R

w,Rd 

F1S130 0.8669 
F1S230 0.8211 
F1S330 0.9643 
F1S430 1.1322 
F2S130 0.9841 
F2S230 0.9200 
F2S330 1.0838 
F2S430 1.2296 
F3S130 1.0830 
F3S230 0.9993 
F3S330 1.2831 
F3S430 1.3319 

3 predicted ones for internal 
loading condition without considering interaction with bending moment 

Specimen 
Fu,num/ 
FWC-BD 

F1S130 0.956 
F1S230 0.999 
F1S330 0.945 
F1S430 1.237 
F2S130 1.051 
F2S230 1.078 
F2S330 1.074 
F2S430 1.305 
F3S130 1.132 
F3S230 1.136 
F3S330 1.186 
F3S430 1.386 

3 predicted ones for internal  
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loading

Specimen 
Fu,num/R

w,Rd 

N1S115 1.451 
N1S215 1.588 
N1S315 1.693 
N1S415 2.079 
N2S115 1.453 
N2S215 1.594 
N2S315 1.699 
N2S415 2.100 
N3S115 1.425 
N3S215 1.564 
N3S315 1.668 
N3S415 2.084 

Table 25. Ratios between numerical ultimate loads and EN 1993

 
Comparing the numerical results with the resistances predicted by EN 1993
23 to 25, Eurocode results are unsafe in 20% of the tests under internal loading condition
sectional types (RHS, SHS and top hat sections. Although 
cases, results are too conservative.
the new stainless steel grades. 
 
Analyzing the numerical values obtained
the nonlinearity parameter "n" is shown. It can be noted that the ultimate loads are almost equal for the three N 
materials, so the "n" parameter has no influence on the ultimate resistance under web crippling.
 
By comparing the results for N2 and F1
studied. Although the loads predicted by
is evident that the value of fu should be
all cross sections and loading conditions.
 
As web crippling is a high localized 
large deformations development for the element collapse,
the behavior. 
 
Therefore, the need to include the effect of the ultimate strength f
resistance under transverse loads is highlighted.
 
5.3. Internal bend radius analysis 
 
The parametric study conducted shows that the
resistance. The relation between the ultimate loads
for N1 and F1 has been studied for S2 (SHS section). The ultimate load
defined as reference (being the highest load
different bend radius is very similar 
table, where Rw,Rd (i) represents the ultimate load
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loading condition considering interaction with bending moment

 

Specimen 
Fu,num/R

w,Rd 
Specimen 

Fu,num/R

w,Rd 
Specimen

F1S115 1.378 N1S130 1.584 F1S130
F1S215 1.512 N1S230 1.759 F1S230
F1S315 1.632 N1S330 2.068 F1S330
F1S415 2.010 N1S430 2.308 F1S430
F2S115 1.530 N2S130 1.593 F2S130
F2S215 1.675 N2S230 1.766 F2S230
F2S315 1,809 N2S330 2.083 F2S330
F2S415 2.182 N2S430 2.314 F2S430
F3S115 1.651 N3S130 1.570 F3S130
F3S215 1.807 N3S230 1.740 F3S230
F3S315 1.946 N3S330 2.053 F3S330
F3S415 2.305 N3S430 2.287 F3S430

Table 25. Ratios between numerical ultimate loads and EN 1993-1-3 predicted ones for end loading condition

Comparing the numerical results with the resistances predicted by EN 1993-1-3 [2], and as can be seen in Tables 
Eurocode results are unsafe in 20% of the tests under internal loading condition

sectional types (RHS, SHS and top hat sections. Although values for the end loading
e. Therefore, some changes must be done in the EN 1993

Analyzing the numerical values obtained for the N material group and different types of cross sections, the effect of 
"n" is shown. It can be noted that the ultimate loads are almost equal for the three N 

materials, so the "n" parameter has no influence on the ultimate resistance under web crippling.

and F1 materials, the influence of the ultimate strength of the
predicted by EN 1993-1-3 [2] are the same, the values provided by Abaqus are not

should be taken into account when predicting the web resistanc
loading conditions. 

phenomenon, the instability failure occurs at very high
development for the element collapse, and the ultimate strength f

Therefore, the need to include the effect of the ultimate strength fu in the expression that predicts the web crippling 
resistance under transverse loads is highlighted. 

 

shows that the internal bend radius has a great influence on the
the ultimate loads for elements whose only different parameter

has been studied for S2 (SHS section). The ultimate load according to
the highest load), and it can be concluded that this relation between ultimate loads for 

 to the square root of the ratio between the two radii
the ultimate load obtained for a bend radius i. 
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interaction with bending moment 

Specimen 
Fu,num/R

w,Rd 

F1S130 1.474 
F1S230 1.633 
F1S330 1.994 
F1S430 2.170 
F2S130 1.648 
F2S230 1.831 
F2S330 2.212 
F2S430 2.409 
F3S130 1.790 
F3S230 1.996 
F3S330 2.388 
F3S430 2.603 

3 predicted ones for end loading condition 

, and as can be seen in Tables 
Eurocode results are unsafe in 20% of the tests under internal loading condition, including all the cross 

end loading condition are safe for all the 
must be done in the EN 1993-1-3 [2] expression for 

for the N material group and different types of cross sections, the effect of 
"n" is shown. It can be noted that the ultimate loads are almost equal for the three N 

materials, so the "n" parameter has no influence on the ultimate resistance under web crippling. 

ultimate strength of the material, fu, can be 
the values provided by Abaqus are not, so it 

the web resistance to "web crippling" for 

very high strengths, so it requires a 
ultimate strength fu of the material influences on 

in the expression that predicts the web crippling 

influence on the web crippling 
different parameter is the bend radius 

to a radius of 2.5 mm has been 
that this relation between ultimate loads for 

two radii, as shown in the following 
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Rw,Rd (2.5)/ Rw,Rd (3.5) 
Rw,Rd (2.5)/ Rw,Rd (5) 
Rw,Rd (2.5)/ Rw,Rd (6) 

Table 26. Ratios between numerical ultimate loads for different bend radius and different materials

 
5.4. Effective bearing length analysis
 
Results highlight the importance of
resistance. Studying the increase in
and for material F1, values listed in
taken as reference, which corresponds
load obtained for a load application length
 
Table 27 shows that the increasing proportions are similar
1993-1-3 [2], so the term that involves
and there is no need to correct it. 
 

  

 
Thickness 

(mm) 

In
te

ri
o

r 
lo

ad
in

g
 

co
n

d
it

io
n

 

t = 3 

t = 1.5 

E
n

d
 

lo
ad

in
g

 
co

n
d

it
io

n
 

t = 3 

t = 1.5 

Table 22. Ratios between numerical ultimate loads for diff
 
The results show that there is a need to 
resistance of stainless steel cold formed
 

6. Conclusions 
 
Web crippling is a local instability 
several studies have been published,
expressions from carbon steel tests,
happens for stainless steel, standards and 
cold-formed profiles and lightweight structure
non-linear behavior requires the development
types of steel. 
 
Numerical models of cold-formed ferritic 
be taken into account when defining
expression in EN 1993-1-3 [2] are sometimes unsafe
has been proposed, based on the existing one,
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Internal loading 
condition 

End loading condition

N1 F1 N1 F1 

1.16 1.17 1.18 1.18 
1.33 1.36 1.43 1.44 
1.36 1.47 1.58 1.59 

 
. Ratios between numerical ultimate loads for different bend radius and different materials

Effective bearing length analysis 

importance of the length of load application in the determination of
se in resistance when increasing the bearing length S

values listed in Table 27 are obtained. Also in this case the highest
which corresponds to a bearing length of 100mm. In Table 27, R

length i. 

the increasing proportions are similar for the numerical values and
involves the bearing length in the EN 1993-1-3 [2] expression appears to be correct

 Rw,Rd (100)/ Rw,Rd (i)   ratios

 25 mm 50 mm 75 mm

Numerical 1.51 1.24 1.
Eurocode 1.45 1.11 1.
Numerical 1.47 1.22 1.
Eurocode 1.54 1.26 1.
Numerical 1.06 1.02 1.
Eurocode 1.00 1.00 1.0
Numerical 1.05 1.04 1.
Eurocode 1.00 1.00 1.0

Ratios between numerical ultimate loads for different effective bearing lengths

is a need to develop a more accurately expression to
cold formed elements. 

 complex phenomenon in which many parameters
have been published, future analysis is essential. The existing rules

carbon steel tests, so its application to other cold formed sections
, standards and design guidelines for steel specifications

and lightweight structures, referring to those for carbon steels.
requires the development of new expressions to determine the web crippling resistance for both 

ferritic stainless steel members under web crippling 
when defining future design guidelines for ferritic stainless steels

sometimes unsafe when applied to ferritic stainless steel,
the existing one, and incorporating all aspects observed
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End loading condition
 

 

ir/5.2  

 1.183 
 1.41 
 1.549 

. Ratios between numerical ultimate loads for different bend radius and different materials 

in the determination of the web crippling 
Ss for section S4 (SHS section) 

case the highest ultimate load has been 
Rw,Rd (i) represents the ultimate 

the numerical values and for those predicted by EN 
expression appears to be correct, 

ratios 

75 mm 100 mm 

1.09 1.0 
1.09 1.0 
1.09 1.0 
1.10 1.0 
1.01 1.0 

.00 1.0 
1.02 1.0 

.00 1.0 
erent effective bearing lengths 

to determine the web crippling 

many parameters are involved, and although 
is essential. The existing rules are statistically adjusted 

cold formed sections must be justified. The same 
specifications do not allow themselves to 

carbon steels. However, the stainless steel 
web crippling resistance for both 

members under web crippling has shown some aspects to 
for ferritic stainless steels: results provided by the 

stainless steel, so a new expression 
aspects observed for this new material. 
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The local imperfection amplitude used in the development
non-linearity parameter "n" have little influence
local phenomenon which develops great
the material, fu, must be taken into account
transverse loads. 
 
Although the effect of the bearing length Ss
factor involving the bend radius of the sections
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1 Introduction  

The following documentation describes the Abaqus plug-in developed in VTT, Technical 
Research Centre of Finland for SAFSS project. 

2 Development plan 

Pre-alpha phase (July 2010 – September 2010) 

This stage covers all activities performed during the software project prior to testing. These 
activities include requirements analysis, software design, software development and unit 
testing.  

Alpha phase and White box testing (October 2010 – December 2010) 

The alpha phase of the release life cycle is the first phase to begin software testing. Alpha 
software  can  be  unstable  and  could  cause  crashes  or  data  loss.  White  box  testing  refers  to  
testing of internal structure opposed to software functionality (black box testing) 

Alpha release and Black box testing (January 2011 – March 2011) 

Moving to black box testing within the project group is known as alpha release. The software 
functionality is tested preferably by another team. During WP 2.2 of SAFSS project the 
plug-in  will  be  tested  by  VTT  and  UPC.  The  alpha  phase  ends  with  a  feature  freeze,  
indicating that no more features will be added to the software. At this time, the software is 
said to be feature complete. 

Beta phase (April 2011 – June 2011) 

The focus of beta testing is reducing impacts to users, often incorporating usability testing. 
Plug-in will be tested according to WP 2.3 of SAFSS project plan. 

Release candidate (July 2011) 

The  first  stable  version  of  the  software  ready  to  be  used  for  WP  2.4  of  SAFSS  project  is  
called release candidate. 

 
 

3 Installation/Uninstallation 

a) Run ProfilerSetup.exe. 

b) Select the installation folder. The folder has to be a subdirectory of abaqus_plugins in 
order to be recognized in Abaqus. 
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Figure 1 Instalation folder 

 
c) Select the Abaqus working directory where “experiments.cfg” will be copied. 

 
Figure 2 Abaqus working directory 

 
d) Press “Install” button 

The plug-in can be uninstalled either by executing “uninstall.exe” in the plug-in folder or from the 
Windows control panel. 
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4 Analysis name 

The default name of analysis is ‘SAFSS’ and it can be changed by user. This name will be 
the name of job files (e.g. ‘SAFSS.odb’, ‘SAFSS.dat’) and a folder with the same name will 
be created in working directory containing the report files.  

5 Section tab 

The first tab allows user to specify geometry of the member. 

 
Figure 3 Section tab 

 
5.1 Profile selection and parameters 

In the “Profile” drop-down menu, user selects pre-defined profiles and user-defined profiles 
included in the database file “profiledef.py”. Each profile usually has a set of different 
number of parameters that has to be entered in the following row. In case of pre-defined 
profiles, the number and ordering of parameters is indicated on the picture.  

If the wrong number of parameters is specified, the program shows the following message: 
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Figure 4 Too many or too few parameters specified 
 

User-defined profiles are selected by choosing “USER DEFINED” option in “Profile” menu 
and specifying all parameters including the profile identification in the beginning. 

Examples of user-defined profiles: 

 

Figure 5 Stiffened track section (SC,50,150,20,2,5) and modified lipped C-section (MLC,50,150,15,20,5,50,2,5) 
 

5.2 Length of the member 

Length is indicating the effective length of the member in the same units as section 
parameters are specified (recommended mm). The real length, however, can be different 
according to the experiment settings.  

For example in 4-point bending test it can be specified (in “experiments.cfg”) that the first 
support is from -0,01 to 0,01 (x L) and the last one is from 0,99 to 1,01 (x L) which means 
that the real length of the member is from -0,01 to 1,01 (x L) and the member is 2% longer, 
while the theoretical span remains 100% because it is from 0,00 to 1,00 (x L). 
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6 Material tab 

Material properties can be entered in the material tab. Selection of material model and its 
parameters follows the same rules as selection of profiles. Only pre-defined material models 
can be used. The first line indicates the material model and the type of enhanced material 
properties and residual stresses distribution. 

 

Figure 6 Material tab 
 
6.1 Ramberg & Osgood model with Hill’s modification 

The original non-linear model developed for aluminium alloys proved to be suitable also for 
stainless steel and other metallic materials. The offset yield stress was suggested to be 0,2% 
proof stress for stainless steel. 

n

E 2,00

002,0 ,  

This model is included in AS/NZS 4373:2001, Eurocode 3, Part 1-4 (calculation of 
deflections) and SEI/ASCE.  

If the ultimate strength is not specified, it is automatically calculated as 2 times 0,2% proof 
stress. 
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6.2 Mirambell & Real model  

A new model developed from Ramberg-Osgood formulation includes also strain hardening 
effect and is able to describe the material behaviour more precisely for strains larger than 
0,2%. It introduces a new Ramberg & Osgood curve originating from 0,2% stress and 
continuing with the same tangent modulus but with different parameter of non-linearity 
(called “m” in this case).  
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6.3 Rasmussen’s modification 

Rasmussen’s study extends Mirambell & Real model reducing its original six parameters to 
three. 

2,02,0
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002,0
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for
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2,0* 1 , 
u

m 2,05,31  

The model is based on assumption that plastic ultimate strain can be approximated with total 
ultimate strain with a very small error and it is a function of the 0,2% and ultimate stresses 
ratio. Also the second non-linear parameter “m” is expressed as the function of the same 
ratio and both equations originate from the experimental data collected by Rasmussen. The 
third parameter reduced in Rasmussen’s modification of Mirambell & Real model is the 
ultimate stress that can be calculated from the following relations: 

alloysallfor
n

E

alloysduplexandausteniticforE

u

50375,01
1852,0

1852,0

02,0

02,0

2,0  

Rasmussen’s model is included in informative Annex C of Eurocode 3, Part 1-4. 
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6.4 Gardner’s modification  

Gardner proposed another interesting modification of Mirambell & Real material model, 
where the second part of Ramberg-Osgood curve passes through 1,0% proof stress instead of 
ultimate stress. This approach is said to be more convenient because it can include also 
compressive behaviour (with a good agreement up to 10% strain) where there is no ultimate 
value and finally, the 1,0% stress is closer to the mostly used area of application of the 
material model. 

2,02,0

0,12,0

2,00,1

2,0

02,0
2,00,1

2,0

2,0

2,0
2,00

11008,0

002,0

for
EEE

for
E

n

n

 

If the ultimate strength is not specified, it is automatically calculated as 2 times 0,2% proof 
stress. 

6.5 Transformation for Abaqus solver 

According to the Abaqus documentation, nominal (engineering) stress is recalculated to true 
stress and nominal (engineering) strain to logarithmic (true) strain using following equations: 

nomnomtrue 1  

E
true

nomtrue 1ln  

The equations proposed by Abaqus user documentation can produce small negative values in 
the first few points which are automatically changed to zeroes.  
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6.6 Enhanced material properties 

The enhanced material properties are calculated separately in the flat parts (f) and corners (c) 
using virgin material (mill certificate) values (v). If any of the following options are selected, 
the basic material model is treated as virgin material and both areas (flats and corners) can 
have different properties in the model. In case of press-braked sections, it is also possible to 
get all necessary values for 1,0% proof stress and therefore Gardner’s material model can be 
used. Otherwise only Mirambell&Real, Rasmussen and Ramberg&Osgood models are 
applicable. 

Table 1 Enhanced material properties 
 
 Cruise:  

Cold-rolled 
Cruise:  
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Rossi:  
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Figure 7 Material distribution pattern for cold-rolled profiles (left) and press-braked profiles (right) 

 

If none of the predictive models is used (the default option of user-defined enhancement is 
selected), user have an option to define flat parts (basic) material and optionally the 
enhanced material in corners. If no corner enhancement is used, the inserted values should 
represent the average properties in the cross-section. 

6.7 Residual stresses  

For the magnitude of bending residual stresses surface values, we are using Gardner’s and 
Cruise’s model that was tested for hollow sections made by circle-to-rectangle forming 
(CRF) process and for press-braked sections. For the cold-formed sections directly from 
sheet metal, we don’t have enough data, however, the results published by Shafer and Peköz 
indicate that similar flat part stresses could be observed between two corners with the same 
orientations but at the end of open-section centre line, the residual stresses are smaller in flat 
parts than in the corners. Therefore we suggest using 15% of yield strength like in case of 
press-braked sections. 

The residual stresses are inserted as initial model conditions using Abaqus keyword  

*INITIAL CONDITIONS, TYPE=STRESS, SECTION POINTS, UNBALANCED 
STRESS=STEP 

with the through-thickness fully plastic distribution. 

Supplementary residual strains are inserted as 

*INITIAL CONDITIONS, TYPE=HARDENING, SECTION POINTS 

with the through-thickness linear distribution (assumes that cross-section remains planar 
after deformation). 
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Table 2 Residual stresses 

 Cold-formed Press-braked User-defined 

 

  

? 

corners 
0,37 fy 

(Gardner et al., 2009) 
0,36 fy 

(Gardner et al., 2009) 
Option 1 

(fraction of fy) 

flats between two 
corners with the same 

orientation 

 

0,63 fy 
(Gardner et al., 2009) 

0,15 fy 
(Gardner et al., 2009) 

Option 2 
(fraction of fy) 

flats between one 
corner  

and one free end 

 

0,15 fy 
0,15 fy 

(Gardner et al., 2009) 

Option 3 

(fraction of fy) 

flats between two 
opposite corners or 

two free ends 

 

0,0 
(0,63 fy in case of  
two free ends*) 

0,0 
(0,15 fy in case of  
two free ends*) 

Option 4 

(fraction of fy) 

* a flat part without corners is considered as a special case of coupon test if user selects 
enhanced properties/residual stresses model and therefore it contains residual stress 

pattern as if cut from the cold-formed specimen. 
The user-defined stresses are active in combination with the default selection of predictive 
models (user-defined enhancement). 

  
Figure 8 Cold-rolled C section with higher residual stresses in the flat parts (left) and press-braked C section with 

lower residual stresses in the flat parts (right) – deformation after stress release (10x scaled) 
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7 Model tab 

In the model tab, user can define the test to be performed as well as others information 
needed for creating FE models.  

 

Figure 9 Model tab 
 

7.1 Experimental layout of pre-defined and user-defined tests 

Experimental layout drop-down menu offers several pre-defined possibilities of 
experimental testing. All of them can be modified by user; however, adding a new one 
requires writing its full name in the textbox below.  

Selecting the first option “NO TEST (just model)” will create only geometrical model of 
member without any supports and loads. Other options will try to execute the buckling and 
Riks analyses as required. 

In the “user-defined test” textbox the custom name of the experimental set-up can be entered 
and it will override the settings above. 
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7.1.1 Stub column tests 

In order to keep longitudinal deformation of the loaded cross-section equal in all nodes and 
at the same time release (or restrain) nodal rotation, stub column tests are loaded with 
deformation and therefore few special rules apply for them.  

“Stub column test (free)” simulates rotation-free support condition at the end-supports, while 
“Stub column test (fixed)” simulates fixed boundary conditions. They produce different 
imperfection distribution as is demonstrated in the following picture: 

 
 

Figure 10 Stub column tests local buckling modes (test 1 – left, test 2 – right) 
 

The simulation is terminated when longitudinal deformation reaches specified fraction of the 
length (default is 1%). 

7.1.2 Plate buckling tests 

Plate buckling tests are basically the same as stub column tests but additionally longitudinal 
edges are supported in the profile on the “top”, “bottom”, “left” and “right” faces. Although 
the primary purpose of this experimental set-up is to use it in  combination with “Plate” 
profile, it is able to replace stub column tests of longer specimen where the first buckling 
mode would be normally global buckling. 

7.1.3 Member buckling test 

Standard member buckling compression test simulates pinned conditions at both ends by 
making end-sections rigid and by supporting and loading them in their centres of gravity.  
Because the member is loaded with force, its load level can be directly controlled during the 
virtual experiment and the calculation is usually terminated when 3 consequent decreasing 
loads are reported. 
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Figure 11 Flexural buckling test: first global buckling mode (left) and GMNIA deformed shape (right) 

 
7.1.4 Bending test 

In case of bending, the most used experimental setup is 4-point bending with loads in 1/3 
and 2/3 of the span. 

 

Figure 12 Global buckling mode in bending test 
7.1.5 Web-crippling tests 

Also several versions of web-crippling test are included in the “experiments.cfg” file. Two 
versions of internal and two versions of external support tests have different load (in case of 
internal test) or support (in case of external) conditions.  

7.2 Element selection 

The typical model sensitivity for element and mesh selection is up to 15% of peak load when 
considering the following options: 
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7.2.1 General purpose shell elements  

FEM solvers offer usually several types of general purpose linear shell elements with finite 
strain formulation and 6 degrees of freedom at each node. Basic S4 shell elements are 
usually strain-locking in out-of-plane bending situations and user needs at least 5 elements 
per  face  to  avoid  it.  On  the  other  hand,  S4R elements do not have this problem, but may 
provide inaccurate results due to hourglassing that occurs in linear elements with reduced 
integration. 

7.2.2 Thin shell elements  

Thin shells can be modelled also with small strain elements, where the transverse shear 
deformation is neglected resulting in 5 degrees of freedom per node. Linear S4R5 elements 
with  4  nodes  suffer  the  same  problems  as  S4R.  There  are  also  two  quadratic  elements  
available in Abaqus: S8R5 and S9R5 with 8 nodes and 9 nodes respectively, where the 
hourglassing is not an issue due to their nonlinear nature. According to Abaqus user 
documentation “S8R5 may give inaccurate results for buckling problems of doubly curved 
shells due to the fact that the internally defined centre node may not be positioned on the 
actual shell surface. Element type S9R5 should be used instead.” 

       
 

Figure 13 typical linear and quadratic shell elements  
7.3 Mesh size 

According to the parametric study, there should be more than 5 elements with linear shape 
function (S4/S4R/S4R5) per buckling half-wave in order to avoid locking. However, 
elements with quadratic shape function (S8R5/S9R5) provide acceptable results starting with 
only one element per buckling half-wave. It should be noted that quadratic elements are 
spanning three nodes which produces less number of bigger elements in the model. 

  
Figure 14 Quadratic elements (S9R5) – left, and linear elements (S4R) – right, with the same node spacing 

 
Corners are meshed differently than flat parts. The governing parameter is ‘Corner 
segments’ which creates additional nodes along the corner arc if the number is higher than 2. 
On the Figure 14, one segment is entered in case quadratic elements (left) and two segments 
were set in case of linear elements (right). The smallest acceptable value is 1. If it is needed 
to model sharp corners, radius equal to zero has to be entered in the section tab instead of 
modifying segments number. 
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8 Analysis tab 

In the last tab, user can define the Aabqus settings. Both basic parts of the analysis can be 
selected or deselected. However, if the LEA step is only deselected and the initial 
imperfections are still required, program will look for the appropriate .odb database 
containing the imperfection distribution data. 

 

Figure 15 Analysis tab 
 

8.1 Imperfections 

There are three possible sources of imperfections that can be freely combined according to 
the user needs. The first (positive) buckling shape is suitable for the local buckling analysis. 
The “global” buckling shape will create a special FE model, where all the cross-sections are 
stiffened with rigid membrane elements and therefore the shape of cross-section is not 
changing during the analysis. This selection usually produces the first global buckling 
modes; however, it can fail in very short members. The third option is to use external source 
(.odb database), where the user is responsible for selecting the proper file with the same 
mesh as the GMNIA file that is going to inherit the imperfection distribution afterwards. 

If user requests more than one buckling modes in global or standard LEA, he will be 
prompted before GMNIA to select the mode he wishes to use.  
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Figure 16 Dialog asking for the buckling mode selection. 
 

Deformed shapes of each calculated mode are saved in the Abaqus working directory in a 
subfolder named according to the analysis name. It is possible to check those .png pictures 
before entering the desired number. 

If the amplitude of selected analysis is not specified (empty field) or is zero, the user will be 
prompted to enter a non-zero value after LEA calculation. It is possible to check figure(s) of 
calculated buckling shape(s) as well. 

8.2 GMNIA settings 

By default, calculation is terminated when the load proportional factor decreases in three 
consequent frames indicating that the peak load was already reached. Maximum deformation 
load proportional factor limit is activated in stub column tests, where it is impossible to have 
peak load proportional factor and it has to be carefully set in order to record the peak load 
before the script terminates the calculation. 

 
When the maximum number of loadsteps is reached, job is also terminated and 
postprocessing tasks are performed automatically. 
In the ‘recorded values’ textbox, users can override default parameters with their own. 
Values must be separated by commas (e.g. ‘FORCES,DISPLACEMENTS’). Acceptable  
strings are: ‘FORCES’, ‘DISPLACEMENTS’, ‘MOMENTS’, ‘STRAINS’, ‘U1’, ‘U2’, 
‘U3’, ‘RF1’, ‘RF2’, ‘RF3’, ‘RM1’, ‘RM2’ ‘RM3’, ‘MISES’ and ‘E’+3 digits which will 
produce fraction of nodes with equivalent plastic strain (PEEQ) lower than 1/10000 of the  
number (e.g. ‘E020’ will report % of values that are smaller than the 0,2% strain). 
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9 Calculation report 

 
Figure 17 Example of calculation report 

 

The report in HTML format is created automatically after each calculation. It contains: 
- Input parameters 

- Calculation time (beginning and end) 
- Imperfection amplitude (for each LEA calculation) 

- Picture of imperfection distribution (for each LEA calculation) in PNG format 
- Table of requested output variables. 

- Picture of 5x scaled deformed shape (from the last recorded step) in PNG format 
At the end of calculation, plug-in attempts to open internet explorer and display the report. 

 

10 User-defined profiles 

Users can define the python database file “profiledef.py” directly or use the configuration 
text file “profiles.cfg” and recompile the database running the “safss.py” script. The former 
option is recommended only for experienced users skilled in python programming.  

10.1 Editing “profiles.cfg” file 

Configuration file is a regular text file with the following syntax: 
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Line starting with “**” indicates the new profile and contains list of possible names of 
profile. 

Line starting with “*” indicates the keyword and it is followed usually by several lines with 
specific parameters. 

Example of profile definition: 

**SQUARE HOLLOW SECTION,SHS 
*VARIABLES 
a,t,r 
*POINTS 
00: a/2,-((a/2)-r) 
01: a/2,(a/2)-r 
02: (a/2)-r,a/2 
03: -((a/2)-r),a/2 
04: -(a/2),(a/2)-r 
05: -(a/2),-((a/2)-r) 
06: -((a/2)-r),-(a/2) 
07: (a/2)-r,-(a/2) 
*LINES 
00: 0,1,t 
01: 2,3,t 
02: 4,5,t 
03: 6,7,t 
*FILLETS 
00: 1,2,t,r,(a/2)-r,(a/2)-r 
01: 3,4,t,r,-((a/2)-r),(a/2)-r 
02: 5,6,t,r,-((a/2)-r),-((a/2)-r) 
03: 7,0,t,r,(a/2)-r,-((a/2)-r) 
 

10.2 Keywords 

*VARIABLES  

The next line should contain a list of variables used in profile specification. In our example 
they are side length (a), thickness (t) and corner radius (r). 

*POINTS     

The following lines contain x,y coordinates of points. The first 4 characters are ignored and 
serve only for the user. It is recommended to use them for numbering (starting from 0) as it 
is demonstrated in the example.  

*LINES      

The following lines contain point1, point2, thickness (stating from the 5th character) 

*FILLETS    

The following lines contain point1, point2, thickness, radius, x, y coordinates of the arc 
centre. 
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10.3 Compiling the configuration file 

Before running the plug-in with new user-defined profiles, the configuration file should be 
recompiled into the “profiledef.py” python-based module. It is done automatically by 
executing “safss.py” script by some Python interpreter (e.g. in Abaqus “File” -> “Run 
script”). Because “safss.py” is the basic module for creating Abaqus input files, it also 
attempts to find “calculation.cfg” and build new models. Therefore several warnings can be 
displayed when recompiling the profile database. 

11 User-defined experimental set-ups 

Similar configuration file “experiments.cfg” is used for experimental definition. It follows 
the same syntax but uses different keywords. It has to be stored in the Abaqus working 
directory, where input files are usually created. “experiments.cfg” doesn’t have to be 
compiled. It is used directly by the plug-in.  

Example of experimental test configuration: 

**4-POINT BENDING TEST 
*SECTIONS 
00: -0.01 
01: 0.01 
02: 0.32 
03: 0.34 
04: 0.66 
05: 0.68 
06: 0.99 
07: 1.01 
*SEGMENTS 
00: 0 
01: 2 
02: 4 
03: 6 
*SEGMENT SUPPORTS 
00: 0,111001 
01: 3,110001 
*SEGMENT LOADS 
00: 1,0.,-500.,0. 
01: 2,0.,-500.,0. 
 

11.1 General keywords 

*LOAD UNITS    

Overrides default 'kN' value 

*RECORD        

This optional parameter specifies what is going to be reported. Acceptable strings (separated 
by commas): 
DEFORMATIONS,U1,U2,U3,FORCES,RF1,RF2,RF3,MOMENTS,RM1,RM2,RM3,LPF. 
Default value is 'DEFORMATIONS,FORCES'. 

*ULTIMATE      

Next optional line specifies what is considered to be the ultimate load. Acceptable is one of 
the following strings: 
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DEFORMATIONS,U1,U2,U3,FORCES,RF1,RF2,RF3,MOMENTS,RM1,RM2,RM3,LPF. 
Default value: 'FORCES'. 

*SECTIONS      

Sections, where the loading, support or material conditions change (0. - 1.) in ascending 
order in points relative to the member length. However, it is possible to insert a fixed-length 
segment by offsetting the section forward or backward by a specific distance. The offset is 
recognized by “+” or “-“ sign followed by a number and “mm” (see example). RIGID 
parameter is optional; it creates rigid lines along the section. 

Example: 

*SECTIONS 
00: 0.0 
01: 0.0 + 50.0 mm 
02: 1.0 – 50.0 mm,RIGID 
03: 1.0,RIGID 
 
*SEGMENTS      

Special purpose segments (e.g. rigid or with increased mesh density) are specified with 1st 
section number. 

Example: 

*SEGMENTS 
00: 0,RIGID 
01: 2,DENSE 
 
*FACES         

Definition  of  faces  on  deformable  segments  (1st  section  number,  face  name:  e.g.  TOP,  
BOTTOM,FRONT,BACK). Note: face will be rigid automatically when FACE SUPPORTS 
or FACE LOADS are defined on it or when specified by additional parameter RIGID) 

Example: 

*FACES 
00: 0,BOTTOM 
01: 4,TOP,RIGID 
 
*CONTACTS       

Local buckling calculations sometimes need contact rigid body on the surface. This can be 
defined by CONTACT keyword. The use is similar as FACE, however, the rigid shell (of the 
same width as selected segment but longer than the member’s face in transverse direction) 
will be created. Then it can be loaded and/or supported using CONTACT LOADS and 
CONTACT SUPPORTS keywords. 

Example: 

*CONTACTS 
00: 3,TOP 
 
*SECTION SUPPORTS   
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Boundary conditions on sections - section number,6 characters (1-fixed,0-free), will apply to 
all nodes or to the centre of gravity (in case of RIGID section). 

Example: 

*SECTION SUPPORTS 
00: 0,111001 
01: 1,110000 
 
*SEGMENT SUPPORTS   

Boundary conditions on rigid segments (rigid segment number, 6 characters) 

*FACE SUPPORTS      

Boundary conditions on rigid faces (rigid face number, 6 characters) 

*CONTACT SUPPORTS 

Boundary conditions on previously defined contacts (contact number, 6 characters) 

*LINE SUPPORTS      

Boundary conditions on longitudinal lines on deformable face (face number, 6 characters) 

*SECTION LOADS      

Loaded sections: section and three numbers separated by commas, will apply to all nodes or 
to the centre of gravity in case of RIGID sections. 

Example: 

*SECTION LOADS 
00: 1,0.,-500.,0. 
01: 2,0.,-500.,0. 
 
*SEGMENT LOADS      

Loaded rigid segments (rigid segment number, 3 loads) 

*FACE LOADS         

Loaded rigid faces (rigid face number, 3 loads) 

*CONTACT LOADS 

Loaded contacts (rigid face number, 3 loads) 

*LINE LOADS         

Loaded lines on deformable segment face (face number, 3 loads) 

*SECTION DEFORMATIONS  

Loaded sections: sections and three numbers separated by commas 
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Example: 

*SECTION DEFORMATIONS 
00: 1,0.,0.,-1. 
 
*CHANNELS  

Definition of measuring points on selected face. Outputs the extreme values of the first and 
last nodes on lines defined as TOP, BOTTOM, FRONT or BACK in a particular section 
(recorded value (e.g. U1,RF3,...), section number, face definition (e.g. TOP)). This keyword 
can be used also on particular profile to measure only one point (see the next chapter) 

Example: 

*CHANNELS 
00: U2,2,TOP 
01: U2,3,TOP 

 

11.2 Keywords applicable to particular profile 

Using the general keywords, users have limited options of specifying the position of loads 
and supports (only TOP, BOTTOM, FRONT and BACK sides that are automatically 
recognized by plugin). If there is a need of placing loads or supports to a particular point of 
the selected profile, the following keywords should be used. 

*NAMED LINE SUPPORTS   

Creates boundary conditions on particular longitudinal edge of  particular cross-section 
(section name, segment number or ALL, point number, 6 characters), note: in another 
sections this option will be neglected. The symmetry plane can be also described using this 
keyword, but  it is usually given in the profile definition and thus it is not needed here. 

Example: 

*NAMED LINE SUPPORTS 
00: RHSYM,3,2,000100 
01: RHSYM,4,2,000100 
(rotation supports only on RHSYM  profile in point number 2 and segments number 3 and 4 
of selected experimental setup) 

 
*NAMED LINE LOADS      

Creates load conditions of particular longitudinal edge of particular cross-section (section 
name, segment number or ALL, point number, 3 loads), note: in another sections this option 
will be neglected. 

Example: 

*NAMED LINE LOADS 
00: RHSYM,3,1,0.,-250.,0. 
01: RHSYM,4,1,0.,-250.,0. 
 

*CHANNELS  
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Definition of measurement specific points and values that will be recorded in the report 
(recorded value (e.g. U1,RF3,...), section number, cross-section name or face location 
(e.g.TOP, BOTTOM,..), point number if specific cross-section required) 

Example: 

*CHANNELS 
00: U2,2,TH,0 
01: U2,3,TH,0 
(vertical displacement at point 0 of TH profile and sections 2 and 3) 
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12 Example calculation: Plate buckling 

Our task is to simulate the experimental test reported by Rasmussen et al. [1] of single 126 
mm wide plate cut from 3,2 mm thick Duplex 2205 stainless steel plate 750 mm long. The 
edges were simply supported (free to rotate).  

The measured geometric imperfections were 0,5 mm. The material tests in longitudinal 
compression show the following results: 

MPaE 1816500  
MPa5272.0  

6,4n  
 

12.1 Experimental set-up configuration 

NOTE: This example was produced with the plug-in version 0.10 (alpha), therefore the 
graphic user interface and outputs can be slightly different in the latest version. 

For our experiment we can use already pre-defined experimental set-up “Plate buckling 
(free)” but in this tutorial we will demonstrate how a new experimental set-up can be easily 
defined. We would like to have faster FE calculation and benefit from the symmetry of the 
experiment. Therefore we can create a new experimental set-up just by entering new 
definition in the “experiments.cfg” file stored in the Abaqus working directory. 

The name will be “Plate symmetrical test” and like the pre-defined plate test, we will load 
the plate with deformation, therefore units are set to “mm” and ultimate load is “U3” which 
refers to the axial deformation 

**PLATE SYMMETRICAL TEST 
*LOAD UNITS 
mm 
*ULTIMATE 
U3 
 
Now we have to define the longitudinal geometry of our specimen. We will have only one 
segment (segment 0) defined by two sections (section 0 and 1) at the beginning (0.0 x 
length) and the end (1.0 x length) of the specimen.  

*SECTIONS 
00: 0.0 
01: 1.0 
 
We would like to support all longitudinal edges we can find in this segment. Therefore we 
will define all possible (top, bottom, front, back) faces as faces 0 to 3 (in fact only one face 
could be specified if we use only “Plate” profile). And we support lines of those faces 
vertically (“y” is the vertical axis, therefore the support definition “x,y,z,rx,ry,rz” is 
“010000”).  

*FACES 
00: 0,TOP 
01: 0,BOTTOM 
02: 0,FRONT 
03: 0,BACK 
*LINE SUPPORTS 
00: 0,010000 
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01: 1,010000 
02: 2,010000 
03: 3,010000 
 
Now we have to support also the cross-sections. Let’s say that section 0 is going to be in the 
symmetry plane (supported longitudinal translation “z “and out-of-plane rotations “rx” and 
“ry”). The second section will be the loaded edge (supported in-plane translations “x” and 
“y”, and in-plane rotation “rz”). Additionally, we have to create the load on this edge 
entering the number of section (1) and three initial deformations (ux=0.0, uy=0.0 and uz= 
1.0). 

 
*SECTION SUPPORTS 
00: 0,001110 
01: 1,110001 
*SECTION DEFORMATIONS 
00: 1,0.,0.,-1. 
 
Now, the file is ready to be saved. We have to make sure that we used all the keyword 
parameters properly and we don’t have duplicate names in the file. 
 
 
 

12.2 Profile definition 

Because the “Plate” profile is not in the basic group of profiles available in drop-down menu 
in the profile tab, we have to check if it is available in “profiles.cfg” as a user profile and add 
it there if it is necessary. 

In the configuration file, we found that following lines are describing “Plate” profile: 

**PLATE 
*VARIABLES 
b,t 
*POINTS 
00: -(b/2),0. 
01: b/2,0. 
*LINES 
00: 0,1,t 
 

This simple definition (2 points and 1 line between those points) is sufficient for our 
purposes and the *VARIABLES keyword indicates that we have to enter the width “b” and 
thickness “t” respectively as profile parameters. Then the table can be filled based on the 
geometric dimensions of the plate (Figure 18). The length will be 375 mm in our 
symmetrical case. 
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Figure 18 Profile definition table 
 

12.3 Material definition 

As a stress-strain relationship, we can use two stage model (Figure 19) corresponding to the 
reported material test curve in longitudinal compression  

Additional parameters were used to fit the measured longitudinal compression (LC) data 
(Figure 20).: 

MPau 640  
012,0u  
5,2m  

 

167 (179)



            Structural applications of ferritic stainless steels  
Profiler: Abaqus plugin user manual 

30 (41) 

 

 

Figure 19 Material definition 
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Figure 20 proposed stress-strain model (blue) in comparison with the test data 
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12.4 Model definition 

If we want to use the user-defined experimental set-up, we have to enter its name in the 
blank text box under the drop-down menu. The selected element is  S9R5 with 5 mm node 
spacing (it means that the maximum element size will be 5x5 mm). We will also need 
geometrical imperfections which would hopefully be generated as the 1st imperfect shape 
with the amplitude 0,5 mm (Figure 21). 

 
Figure 21 Model definition 

 
 
12.5 Analysis settings 

Finally, we check that “Run analysis” is on and the report will be saved. In the stub column 
and plate buckling tests where the deformation is controlled instead of the loading force, we 
have to set the analysis end-criteria as the maximum longitudinal deformation. In 
Rasmussesn’s study, experiments reported results up to 4 mm which is slightly over 0,5% of 
the length. Therefore 1,0% settings should be enough in our case.  
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Figure 22 Analysis settings 

 
Now, the calculation is ready to start. Pressing “Apply” button starts the calculation as well 
as “OK” button and additionally keeps the settings for further use.  

 
12.6 Simulation outputs 

In the first steps, model input files are created and imported into Abaqus CAE. We selected 
to use imperfections from the 1st buckling shape (it is called LEA2 in the plug-in) and the 
successful import of the file will produce following output: 

Input file PLATE-LEA2.inp successfully created. 
The model "PLATE-LEA2" has been created. 
The part "PART" has been imported from the input file. 
The model "PLATE-LEA2" has been imported from an input file.  
Please scroll up to check for error and warning messages. 
 
Similarly, basic input file is created and displayed on screen. 

Input file PLATE.inp successfully created. 
The model "PLATE" has been created. 
The part "PART" has been imported from the input file. 
The model "PLATE" has been imported from an input file.  
Please scroll up to check for error and warning messages. 
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Now, the local buckling analysis has started. It may take a while to get all of the following 
messages: 

LOCAL BUCKLING ANALYSIS 
Job PLATE-LEA2: Analysis Input File Processor completed successfully. 
Job PLATE-LEA2: Abaqus/Standard completed successfully. 
Job PLATE-LEA2 completed successfully. 

 

Figure 23 The first buckling mode of the plate 
 

In the next step, the basic model is created again, this time with perturbed shape. However, it 
is not imported into the CAE but it is still used for the calculation. 

GMNIA 
Input file PLATE.inp successfully created. 
Job PLATE: Analysis Input File Processor completed successfully. 
 
When  the  GMNIA  calculation  starts,  user  has  already  the  full  control  of  the  CAE  
environment and can rotate, pan and zoom the model. The calculation is running in the 
background updating the deformed shape after each step and producing following outputs: 

Frame :  0, Load:   0.00 mm 
Frame :  1, Load:   0.00 mm 
Frame :  1, Load:   0.24 mm 
Frame :  2, Load:   0.45 mm 
Frame :  3, Load:   0.65 mm 
... 
Frame : 12, Load:   3.19 mm 
Frame : 13, Load:   3.62 mm 
Frame : 14, Load:   4.40 mm 
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Figure 24 Deformed shape of the plate in the last time increment (scale 3x) 

 
Calculation usually stops when 
a) Job is completed. 
b) Job is aborted. 
c) Monitored values (number of steps or the load proportional factor) reaches given criteria. 

In this case the calculation is terminated showing NOTE message. When the member is 
loaded with forces/moments, the peak load can be usually observed and the termination 
occurs when the load proportional factor decreases 3 times in a row. When the member is 
loaded with deformations, the load proportional factor has to be limited directly as % of 
length. Additionally, user can specify the maximum allowed number of load steps. 

 
In our case the job was terminated by plug-in settings of 1% axial deformation limit.. 
 
NOTE: JOB TERMINATED BY PLUGIN REQUEST. (1% DEFORMATION REACHED) 
 
HTML report was automatically created and displayed. 
 
ANALYZING ODB DATABASE ...  DONE 
WRITING HTML REPORT ...  DONE. 
 
The most important table in the report represents data requested in the analysis tab. These 
data requests can be alternatively specified in “experiments.cfg” for each experimental set-
up. 
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Figure 25 Results table 

 
From this table we can easily plot charts. Axial deformation is 2x U3 and the load is RF3. As 
it is demonstrated in Figure 26 our results are very close to the numerical simulation reported 
by Rasmussen using isotropic strain hardening model with 3 half-waves initial deformation 
“Iso_sh_3hw”. 
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Figure 26 Comparison of Experimental tests and numerical models.  

The plugin output is plotted with a blue line. 
 

 

13 Example calculation: Web crippling 

This example explains the Abaqus plug-in configuration of new experiment and the 
calculation of selected case.  
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13.1 Creating the test set-up 

All the experimental set-ups are stored in the experiments.cfg file that is by default located in 
Abaqus working directory. User can add new definitions and they are accessed by plug-in as 
“user-defined test”.  

 Open the file and write “**” and the name of new test on an empty line 

**UPC-CHANNEL 

Since the load will be introduced by displacement, it is necessary to change default load 
units (kN) to mm. The ultimate load will be the maximum vertical displacement (y axis is 
U2 in Abaqus) and this has to be also specified. 

 Write the keywords “*LOAD UNITS” and “ULTIMATE” as follows 

*LOAD UNITS 
mm 
*ULTIMATE 
U2 

13.1.1 Dividing member into segments 

All  functional  segments  with  different  load  or  support  conditions  are  divided  by  so  called  
sections. Since the length of the member is variable, the position of each section is a fraction 
of the member length (usually between 0.0 and 1.0). However, it is possible to define fixed 
length of the segment by setting offset value in mm from the relative position (e.g. 0.0 + 25 
mm will create section 25 mm from the member end regardless its length). 

 Using “*SECTIONS” keyword define sections for the beginning and end of the member 
(0.0 and 1.0), 40 mm long support aread (0.0 + 40 mm and 1.0 – 40 mm), 100 mm long 
loading area (0.5 -50 mm and 0.5 + 50 mm) and 200 mm long area that will have denser 
mesh (0.5 -100 mm and 0.5 + 100 mm). For the monitoring purposes create also the 
middle section (0.5). Each section has its own line and the first four characters are just 
for the numbering purposes (usually “00: “, “01: “, …). 

*SECTIONS 
00: 0.0 
01: 0.0 + 40.0 mm 
02: 0.5 - 100.0 mm 
03: 0.5 - 50.0 mm 
04: 0.5 
05: 0.5 + 50.0 mm 
06: 0.5 + 100.0 mm 
07: 1.0 - 40.0 mm 
08: 1.0 
 
Note that the section order has to be ascending (here from 0.0 to 1.0) and the length of the 
member has to be bigger than 280 mm due to fixed length of several segments.  

If the whole segment is affected by some modification (at the moment it can be either rigid 
body or it can have denser mesh), it has to be specified using keyword “*SEGMENTS” 
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 Indicate segments with denser mesh in the loading area (200 mm wide). The number 

before “DENSE” parameter indicates the starting section of each segment. 

*SEGMENTS 
00: 2,DENSE 
01: 3,DENSE 
02: 4,DENSE 
03: 5,DENSE 
 

13.1.2 Definition of special-purpose faces 

Snce the loads and supports will be applied only at the top or bottom faces of the member, 
we will have to indicate the faces location using the keyword “*FACES”. Faces are defined 
the same way as segments with the parameter “TOP”, “BOTTOM”, “FRONT” or “BACK” 
at the end. Plugin automatically recognize the proper face (or more faces if necessary). It is 
also possible to specify a certain face of a certain profile, but this requires another keyword. 

 Specify two faces at support location and two faces in the middle of the member for the 
loading. Stiffen the web at the support area using parameter “RIGID” to suppress web-
crippling there. 

*FACES 
00: 0,BOTTOM 
01: 0,FRONT,RIGID 
02: 3,TOP 
03: 4,TOP 
04: 7,FRONT,RIGID 
05: 7,BOTTOM 
 

13.1.3 Creating supports 

We will create supports on rigid faces at the bottom of the first and the last segments. These 
faces can be loaded or supported only at their reference points that are automatically created 
at  their  centre  of  gravity.  Even  though  the  support  point  is  not  exctly  the  same  as  in  
experiment, it will have minor effect in web-crippling simulations. 

 With the “*FACE SUPPORTS” keyword specify simple support at both ends (faces 0 
and 5). The 6-digits number refers to the 6 degrees of freedom (x,y,z,rx,ry,rz) where 0 
and 1 stands for free and fixed support respectively. 

*FACE SUPPORTS 
00: 0,111111 
01: 5,110011 

13.1.4 Creating loads 

The member will be loaded in the middle segments (segment 1 and 2) only in upper corners 
bacuase of local buckling of the flange.  

Loads can be inserted on faces (keyword “*FACE LOADS” or “*FACE 
DEFORMATIONS”) or on their longitudinal edges (keyword “*LINE LOADS” or “*LINE 
DEFORMATIONS”). 
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 Create vertical deformation load on both faces (face 2 and 3). Three numbers separated 

by comma will define loadstep in x,y and z direction that refers to the load unit. 

*LINE DEFORMATIONS 
00: 2,0.,-1.,0. 
01: 3,0.,-1.,0. 

We would like to prevent the loaded face moving sideways, and therefore it is necessary to 
support the same lines in horizontal direction 

 Create horizontal support of the loaded area 

*LINE SUPPORTS 
00: 2,100000 
01: 3,100000 
 

13.1.5 Definition of measuring points 

Even though the report usually contains general information about the extreme stress and 
deformation at each step, these values are measured only at specific points in real 
experiments. We will create one measuring point at the bottom of the middle section. 

 Use the keyword “*CHANNELS” to define measurement of vertical deflections in the 
middle of the member 

*CHANNELS  
00: U2,4,BOTTOM 
 

13.1.6 Saving the experimental setup 

 Save the “experiment.cfg” in your working folder of Abaqus. It is not required that 
Abaqus/CAE is closed during the changes or restarted afterwards. 

**UPC-CHANNEL 
*LOAD UNITS 
mm 
*ULTIMATE 
U2 
*SECTIONS 
00: 0.0 
01: 0.0 + 40.0 mm 
02: 0.5 - 100.0 mm 
03: 0.5 - 50.0 mm 
04: 0.5 
05: 0.5 + 50.0 mm 
06: 0.5 + 100.0 mm 
07: 1.0 - 40.0 mm 
08: 1.0 
*SEGMENTS 
00: 2,DENSE 
01: 3,DENSE 
02: 4,DENSE 
03: 5,DENSE 
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*FACES 
00: 0,BOTTOM 
01: 3,TOP 
02: 4,TOP 
03: 7,BOTTOM 
*FACE SUPPORTS 
00: 0,111111 
01: 3,110011 
*LINE DEFORMATIONS 
00: 1,0.,-1.,0. 
01: 2,0.,-1.,0.  
*LINE SUPPORTS 
00: 1,100000 
01: 2,100000 
*CHANNELS 
00: U2,4,BOTTOM 
 

13.2 Running the analysis 

 Open Abaqus/CAE and start “SAFSS” plugin in program menu. 

13.2.1 Basic settings 

 Name your analysis (e.g. UPC-EXAMPLE) 

 Insert the geometry of the cross-section in the first tab. Here we changed only the default 
length 200 mm to 600 mm. 

 
 In the “Model” tab, indicate the user-defined test name. 

 
 Change the other settings accordint to your preference and click “OK” or “Apply”. 

13.2.2 Caluclation 

From this moment the plugin is controlling the Abaqus environment until the end of the 
calculation.  In  the  beginning  there  is  usually  one  or  two  buckling  steps  and  then  the  arc-
length  analysis  where  user  can  interact  with  the  environment  (e.g.  rotate  and  scale  the  
deformed model or prepare parameters for another anlalysis). 
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13.2.3 Report file 

After the end of calculation, report file is usually displayed (if running on Windows with 
Internet Explorer installed) in form of HTML file. 

********************************************************* 
*  THIS FILE WAS CREATED USING ABAQUS PROFILER PLUGIN   * 
*     BY VTT, TECHNICAL RESEARCH CENTRE OF FINLAND      * 
*            FOR SAFSS PROJECT IN ESPOO 2011            * 
********************************************************* 
Experiment: UPC-EXAMPLE 
Set-up: UPC-CHANNEL 
Section: LIPPED CHANNEL,50.0,150.0,15.0,2.0,5.0 
Length: 600.0 mm 
Material: MIRAMBELL-REAL,200000,280,7,450,2.64,0.4 
Analysis started: 14. 6.2012 10:20:47 
Analysis ended: 14. 6.2012 10:27: 2 
Analysis end event: terminated by plug-in 
 
LOCAL BUCKLING ANALYSIS 
Imperfections: 1.0 mm 
Critical deformation: 2.1499 mm  
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No. DEFORMATIONS [mm] REACTION FORCES [kN] LPF CH0-U2 
No. U1 U2 U3 RF1 RF2 RF3 LPF CH0 

1 0.000 0.000 0.000 0.0 0.0 0.0 0.000 0.000 
2 1.000 0.141 0.019 0.9 2.1 0.0 0.000 -0.086 

No. DEFORMATIONS [mm] REACTION FORCES [kN] LPF CH0-U2 
No. U1 U2 U3 RF1 RF2 RF3 LPF CH0 

1 0.000 0.000 0.000 0.0 0.0 0.0 0.000 0.000 
2 0.946 0.707 0.119 4.4 13.7 0.0 0.478 -0.184 
3 2.285 1.324 0.171 6.7 19.1 0.0 0.947 -0.252 
4 2.628 1.479 0.180 7.4 19.8 0.0 1.073 0.262 
5 2.967 1.643 0.189 8.2 20.5 0.0 1.206 0.295 
6 3.464 1.904 0.203 9.5 21.2 0.0 1.421 0.341 
7 4.178 2.329 0.226 11.6 22.1 0.0 1.776 0.404 
8 4.857 2.784 0.251 13.6 22.9 0.0 2.165 0.460 
9 5.506 3.264 0.281 15.6 23.6 0.0 2.581 0.513 
10 6.127 3.758 0.321 17.4 24.2 0.0 3.020 0.562 
11 6.723 4.262 0.363 19.1 24.9 0.0 3.477 0.609 
12 7.294 4.775 0.407 20.6 25.5 0.0 3.949 0.655 
13 7.847 5.294 0.453 21.9 26.1 0.0 4.435 0.699 
14 8.377 5.819 0.499 23.1 26.6 0.0 4.931 0.741 
15 8.886 6.348 0.548 24.2 27.0 0.0 5.438 0.782 
16 9.384 6.882 0.598 25.1 27.3 0.0 5.952 0.821 
17 9.864 7.419 0.650 26.0 27.5 0.0 6.473 0.859 

 
GMNIA RESULTS 
Ultimate load: 7.41946 mm 
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