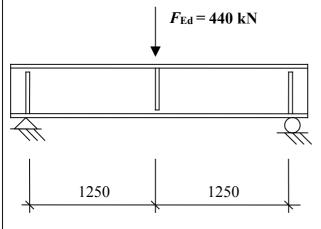
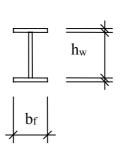
T
LULEÅ
OF TECHNOLOGY

Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden


Tel: +46 920 91 000 Fax: +46 920 91 913


FOGLIO DI CALCOLO

Commessa N.			Foglio	1	di	6	Rev	В
Titolo commessa	RFC	CS Stainle	ss Steel	Valori	satio	n Proje	ect	
Argomento	mpio di pi e alta	cogetto 7	7 – Res	isten	za a ta	glio d	i una	
Cliente		Redatto da	A	О	Data	(Giugn	o 2002
RFCS		Verificato d	la A	Т	Data	(Ottobr	re 2002
		Revisionato	o da M	EB	Data	1	Aprile	2006

ESEMPIO DI PROGETTO 7 - RESISTENZA A TAGLIO DI UNA TRAVE ALTA

Progettare una trave in termini di resistenza allo sforzo di taglio. La trave con sezione ad I è semplicemente appoggiata, con una luce secondo la seguente figura. La flangia superiore è vincolata lateralmente.

Usare acciaio tipo 1.4462 laminato a caldo.

$$f_y = 460 \text{ N/mm}^2$$

 $E = 200 000 \text{ N/mm}^2$

Provare con una sezione trasversale avente

Flangie: $12 \times 200 \text{ mm}^2$ Anima: $4 \times 500 \text{ mm}^2$ Rinforzi: $12 \times 98 \text{ mm}^2$

Spessore gola saldata: 4 mm

Analisi strutturale

Il taglio massimo ed il momento flettente massimo di progetto si ottengono con

$$V_{\text{Ed}} = \frac{F_{\text{Ed}}}{2} = \frac{440}{2} = 220 \,\text{kN}$$

$$M_{\text{Ed}} = \frac{F_{\text{Ed}} L}{4} = \frac{440 \times 2,5}{4} = 275 \,\text{kNm}$$

Coefficiente parziale di sicurezza

$$\gamma_{M0} = 1,1
\gamma_{M1} = 1,1$$

Tabella 2.1

Tabella 3.1

Par. 3.2.4

Classificazione della sezione trasversale

$$\varepsilon = \sqrt{\frac{235}{460} \frac{200}{210}} = 0,698$$

Tabella 4.2

Par. 4.3

T	Commessa N.		Foglio	2	di 6	Rev	В			
LULEA UNIVERSITY OF TECHNOLOGY	Titolo commessa R	FCS Stainle	ss Stee	l Valoris	sation Pr	oject				
Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden	Division of Steel Structures, University									
Fax: +46 920 91 913 FOGLIO DI CALCOLO	Giugno 2	2002								
TOOLIO DI OALGOLO	RFCS	RFCS Verificato da AT Data								
		Revisionato da MEB Data					006			
Anima soggetta a flessione						Tabella				
$\frac{c}{t\varepsilon} = \frac{500 - 2 \times \sqrt{2} \times 4}{4 \times 0.698} = 175 > 7$	74,8, quindi l'anim	a è di Classo	e 4.							
Flangia soggetta a compressione						Tabella	4.2			
$\frac{c}{t\varepsilon} = \frac{200 - 4 - 2 \times \sqrt{2} \times 4}{2 \times 12 \times 0.698} = 11,$	$0 \le 11.0$, quindi la	flangia in co	mpress	ione è di	Classe 3.					
Pertanto, per la classificazione comp										
Resistenza al taglio						Par. 5.4.	3			
La resistenza all'instabilità per taglic	deve essere contr	ollata, quan	do $h_{\rm w}$ /	$t_{\rm w} \ge \frac{23}{n}$	$\varepsilon \sqrt{k_{ au}}$					
per anime con irrigidimenti verticali. $a/h_{\rm w}=1250/500>1$, dunque										
$k_{\rm \tau} = 5.34 + 4 \left(\frac{h_{\rm w}}{a}\right)^2 = 5.34 + 4$	$4\left(\frac{500}{1250}\right)^2 = 5,98$					Eq. 5.16	a			
EN 1993-1-4 raccomanda $\eta = 1,2$						Par. 5.4.	3			
$h_{\rm w}/t_{\rm w} = \frac{500}{4} = 125 \ge \frac{23}{1,2}0,698\sqrt{3}$	5,98 = 32,7									
Pertanto si deve controllare la resiste	•				ome:	F 5.13				
$V_{b,Rd} = V_{bw,Rd} + V_{bf,Rd} \le \frac{\eta f_{yw} V}{\sqrt{3} \gamma}$	$\frac{t_{\rm w} t_{\rm w}}{t_{\rm M1}} = \frac{1.2 \times 460 \times 10^{-3}}{\sqrt{3} \times 10^{-3}}$	$\frac{500 \times 4}{1} = 57$	/9,47 kl	N		Eq. 5.12	a			
$V_{\rm bw,Rd} = \frac{\chi_{\rm w} f_{\rm yw} h_{\rm w} t_{\rm w}}{\sqrt{3} \gamma_{\rm M1}}$						Eq. 5.12	b			
$\chi_{\rm w} = \eta = 1,2$ per	$\overline{\lambda}_{\mathrm{w}} \leq 0.60/\eta = 0.3$	5				Eq. 5.13	a			
$\chi_{\rm w} = \eta = 1.2$ per $\chi_{\rm w} = 0.11 + \frac{0.64}{\overline{\lambda}_{\rm w}} - \frac{0.05}{\overline{\lambda}_{\rm w}^2} \text{ per}$	$\overline{\lambda}_{\mathrm{w}} > 0.60/\eta = 0.3$	5				Eq. 5.13	b			
$\overline{\lambda}_{\rm w} = \left(\frac{h_{\rm w}}{37.4t_{\rm w}\varepsilon\sqrt{k_{\tau}}}\right)$										
$\overline{\lambda}_{\text{w}} = \left(\frac{500}{37,4 \times 4 \times 0,698 \times \sqrt{5,98}}\right) = 1,958 > 0,60/\eta = 0,5$										
Di conseguenza, il contributo da par	te dell'anima della	trave si otti	ene cor	n:						
$\chi_{\rm w} = 0.11 + \frac{0.64}{1.958} - \frac{0.05}{1.958^2} = 0.05$,424									

T	Commessa N.			Foglio	3	di	6	Rev	В	
LULEÅ UNIVERSITY OF TECHNOLOGY	Titolo commessa	RFCS	Stainle	ss Stee	el Valo	risation	n Pro	ject		
Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden Tel: +46 920 91 000	Argomento	za a t	aglio di	una						
Fax: +46 920 91 913 FOGLIO DI CALCOLO	Cliente Redatto da AO Data							Giugno 2002		
POGLIO DI CALCOLO	RFCS	V	Verificato da AT Data					Ottobre 2002		
		R	Revisionato da MEB Data			Aprile 2	2006			
$\chi_{\rm w} f_{\rm yw} h_{\rm w} t_{\rm w} = 0.424 \times 46$	0×500×4							1		
$V_{\text{bw,Rd}} = \frac{\chi_{\text{w}} f_{\text{yw}} h_{\text{w}} t_{\text{w}}}{\sqrt{3} \gamma_{\text{M1}}} = \frac{0.424 \times 46}{\sqrt{3}}$	$\frac{6\times300\times1}{\times1,1}=20$	4,74 ki	N							
Il contributo delle flange può essere completamente per contrastare il mo sezione composta di sole flange si ca	mento flettente.				•	una		Par. 5.	4.3	
$M_{f,Rd} = 12 \times 200 \times \frac{460}{11} \times (500 + 12)$	= 513,86 kNm									
$M_{\rm f,Rd} > M_{\rm Ed} = 275$ kNm, quindi le all'instabilità per taglio	flange possono c	ontribu	uire alla	resisto	enza					
$V_{\text{bf,Rd}} = \frac{b_{\text{f}} t_{\text{f}}^2 f_{\text{yf}}}{c \gamma_{M1}} \left[1 - \left[\frac{M_{\text{Ed}}}{M_{\text{f,Rd}}} \right]^2 \right]$								Eq. 5.1	17	
$c = a \left[0.17 + \frac{3.5 b_{\rm f} t_{\rm f}^2 f_{\rm yf}}{t_{\rm w} h_{\rm w}^2 f_{\rm yw}} \right]$	$\frac{c}{a} \le 0.65$									
$= 1250 \times \left[0.17 + \frac{3.5 \times 200 \times 1}{4 \times 500^2} \right]$	_		< 0.65>	<1250	= 812	mm				
$V_{\text{bf,Rd}} = \frac{200 \times 12^2 \times 460}{338 \times 1,1} \times \left[1 - \left[\frac{2}{51}\right]\right]$	$\left[\frac{75}{3,86}\right]^2$ = 25,43	3 kN								
$V_{b,Rd} = V_{bw,Rd} + V_{bf,Rd} = 230,17$	$kN \le 579,47 kN$	N								
Irrigidimenti trasversali Gli irrigidimenti trasversali devono essere verificati contro la compressione e l'instabilità flessionale, usando $\alpha=0,49,\ \overline{\lambda}_0=0,2$. Viene utilizzata una sezione efficace, che comprende gli irrigidimenti e parti dell'anima. La porzione inclusa dell'anima è larga $11\varepsilon t_w$, quindi la sezione dell'irrigidimento trasversale è di Classe 3.								Par. 5.	4.5	
$a/h_{\rm w} = 1250/500 = 2.5 \ge \sqrt{2}$, of intermedio deve soddisfare anche la	_		ento d'in	erzia (del rinf	orzo		Eq. 5.3	37	
$I_{\rm st} \ge 0.75 h_{\rm w} t_{\rm w}^3 = 0.75 \times 500 \times 4^3$	$h_{\rm st} \ge 0.75 h_{\rm w} t_{\rm w}^3 = 0.75 \times 500 \times 4^3 = 24000 \mathrm{mm}^4$							Eq. 5.3	37	
$I_{\text{st}} = 2 \times \frac{(11 \times 0.698 \times 4) \times 4^3}{12} + \frac{12 \times 200^3}{12} = 8.00 \times 10^6 \text{ mm}^4, \text{ hence fulfilled.}$										
La resistenza a compressione si ottic	ene come									
$N_{c,Rd} = A_s f_y / \gamma_{M0}$ $A_s = (12 \times 200 + 11 \times 0.698 \times 4 \times 4)$	2) = 2461,42 mr	m^2						Eq. 4.2	25	

T	Commessa N.			Foglio	4	di	6	Rev	В
UNIVERSITY OF TECHNOLOGY	Titolo commessa	RFCS	S Stainle	ss Stee	l Valori	sation	Pro	ject	
Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden Tel: +46 920 91 000	Argomento	Esem	pio di pr alta	ogetto	7 – Res	istenz	a a t	aglio di	una
Fax: +46 920 91 913 FOGLIO DI CALCOLO	Cliente	F	Redatto da	AO		Data		Giugno 2002	
	RFCS	V	/erificato d	a A	ΛT	Data		Ottobre 2002	
		F	Revisionato	o da 🏽 🧎	ИEВ	Data		Aprile 2	2006
$N_{c,Rd} = 2461,42 \times 460/1,1 = 1029,$	32 kN								
La resistenza all'instabilità è ottenuta	a come								
$N_{\rm b,Rd} = \chi A_{\rm s} f_{\rm y} / \gamma_{\rm M1}$								Eq. 5.2	a
$\chi = \frac{1}{\varphi + \left[\varphi^2 - \overline{\lambda}^2\right]^{0.5}} \le 1$								Eq. 5.3	
$\varphi = 0.5 \left(1 + \alpha \left(\overline{\lambda} - \overline{\lambda}_0 \right) + \overline{\lambda}^2 \right)$								Eq. 5.4	
$\bar{\lambda} = \frac{l}{i} \frac{1}{\pi} \sqrt{\frac{f_{yw} \beta_A}{E}}$								Eq. 5.5	a
$l = 0.75h_{\rm w} = 0.75 \times 500 = 3$	75 mm							Par. 5.4	1.5
$\beta_{\rm A}$ = 1,0 poiché la sezione del ri	nforzo è di Clas	sse 3							
$ \overline{\lambda} = \frac{375}{\sqrt{\frac{8 \times 10^6}{2461,42}}} \frac{1}{\pi} \sqrt{\frac{460 \times 1}{200000}} = $	0,100								
$\varphi = 0.5 \times (1 + 0.49 \times (0.100 - 0.00))$	$(0,2) + (0,100^2)$	= 0,4	481						
$\chi = \frac{1}{0,481 + \left[0,481^2 - 0,100^2\right]}$	${]0,5} = 1,05 >$	> 1	$\Rightarrow \chi =$: 1,0					
Poiché $\beta_A = 1.0$ si ha che $N_{b,Rd} = N_{b,Rd}$	-				no suffic	cienti.			
,									
Interazione taglio – flessione									
Se il contributo della resistenza a t bisogna verificare l'effetto combinat				η_3 , è n	naggior	e di 0	,5,	Par. 5.4	1.3
$ \frac{1}{\eta_3} = \frac{V_{\text{Ed}}}{V_{\text{bw,Rd}}} \le 1,0 $								Eq. 5.2	3
	$\frac{1}{\eta_3} = \frac{220}{204,74} = 1,075 > 0,5, \text{ quindi è necessario tenere conto dell'interazione.}$								
La condizione è									
$\left \frac{1}{\eta_1} + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}} \right) \left(2\overline{\eta}_3 - 1 \right)^2 \right \le$	1,0 for $\overline{\eta}_1 \ge -\frac{1}{2}$	$\frac{M_{\rm f,Rd}}{M_{\rm pl,Rd}}$						Eq. 5.2	1
dove:									
$ \frac{-}{\eta_1} = \frac{M_{\rm Ed}}{M_{\rm pl, Rd}} $								Eq. 5.2	2

T	Commessa N.		Foglio	5	di	6	Rev	В	
LULEÁ UNIVERSITY OF TECHNOLOGY	Titolo commessa	RFCS Stainle	ess Steel		sation	Pro	ject		
Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden Tel: +46 920 91 000	Argomento	a a t	aglio di ι	ına					
Fax: +46 920 91 913	Cliente	Redatto da	A A	О	Data		Giugno 2002		
	RFCS	Verificato o	da A	Т	Data		Ottobre 2002		
		Revisionat	o da M	EB	Data		Aprile 2	006	
Calcolo delle proprietà della sezione efficace. Le flangie sono di Classe 3 e, quindi, pienamente efficaci. L'altezza dell'anima deve essere ridotta col fattore di riduzione ρ , per anima saldata. $\rho = \frac{0,772}{\overline{\lambda}_p} - \frac{0,125}{\overline{\lambda}_p^2} \le 1$									
$\overline{\lambda}_{\rm p} = \frac{\overline{b}/t}{28,4\varepsilon\sqrt{k_{\sigma}}}$ dove	$\overline{b} = d =$	$= 500 - 2 \times 4 \times$	$\sqrt{2} = 4$	188,68	mm		Eq. 4.2		
Assumendo una variazione linear nell'anima	e e simmetrica	ı della distrib	ouzione	della	tensic	ne			
$\psi = \frac{\sigma_2}{\sigma_1} = -1$									
$\Rightarrow k_{\sigma} = 23.9$							Tabella	4.3	
$\overline{\lambda}_{p} = \frac{488,68/4}{28,4 \times 0,698 \times \sqrt{23,9}} = 1,$	26								
$\rho = \frac{0,772}{1,26} - \frac{0,125}{1,26^2} = 0,534$	≤ 1								
$b_{\text{eff}} = \rho b_{\text{c}} = \rho \bar{b} / (1 - \psi) = 0.5$	34×488,68/(1-	(-1)) = 130,4	8				Tabella	4.3	
$b_{e1} = 0.4b_{eff} = 0.4 \times 130.48 = 5$ $b_{e2} = 0.6b_{eff} = 0.6 \times 130.48 = 7$	•						Tabella	4.3	
Calcolare il modulo della sezione efficace in flessione e_i è considerato positivo dal baricentro della flangia superiore e diretto verso il basso $A_{\text{eff}} = \sum_i A_i = b_{\text{f}} t_{\text{f}} \times 2 + b_{\text{el}} t_{\text{w}} + b_{\text{e2}} t_{\text{w}} + (h_{\text{w}} / 2) t_{\text{w}} = 6321,92 \text{mm}^2$									
$e_{\text{eff}} = \frac{1}{A_{\text{eff}}} \sum_{i} A_{i} e_{i} = \frac{1}{A_{\text{eff}}} \left[b_{f} t_{f}(0) + b_{f} t_{f}(h_{w} + t_{f}) \right] + \left[b_{e1} t_{w}(0.5(b_{e1} + t_{f})) + b_{e2} t_{w}(0.5(h_{w} + t_{f}) - b_{e2}/2) + (h_{w}/2) t_{w}(0.75h_{w} + 0.5t_{f}) \right] = 266,44 \text{ mm}$									
$I_{\text{eff}} = \sum_{i} I_{i} + \sum_{i} A_{i} (e_{\text{eff}} - e_{i})^{2}$, , , , , , , ,		´ -		mm				
$+ b_{\rm f}t_{\rm f}(e_{\rm eff}-0)^2 + b_{\rm f}t_{\rm f}[e_{\rm eff}+b_{\rm e2}t_{\rm w}[e_{\rm eff}-0.5(h_{\rm w}+t_{\rm f}-0.5(h_{\rm w}+t_{\rm f}$		C1 W L C11	(01 1	′ -					

 $= 3,459 \times 10^8 \, \text{mm}^4$

T
UNIVERSITY OF TECHNOLOGY
Department of Civil ar

Department of Civil and Mining Engineering Division of Steel Structures, University Campus, SE-971 87 Luleå, Sweden

Tel: +46 920 91 000 Fax: +46 920 91 913

FOGLIO DI CALCOLO

Commessa N.			Foglio	6	di	6	Rev	В
Titolo commessa	RFC	CS Stainle	ss Steel	Valori	sation	n Proje	ect	
Argomento		mpio di pi e alta	ogetto 7	' – Res	sistenz	za a ta	glio d	i una
Cliente		Redatto da	A	О	Data	(Giugn	o 2002
RFCS		Verificato d	la A'	Т	Data Otto			e 2002
		Revisionato	oda M	EB	Data	1	Aprile	2006

$$\overline{\eta}_1 = \frac{M_{\rm Ed}}{M_{\rm pl, Rd}}$$

 $M_{\rm f,Rd} = 513,86 \text{ kNm}$ (foglio 3 del presente Esempio)

 $M_{\rm pl,Rd}$ è la resistenza plastica della sezione.

$$M_{\text{pl,Rd}} = M_{f,Rd} + \frac{t_w h_w^2 f_y}{4 \gamma_{M0}} = 513,86 + \frac{4 \times 500^2 \times 460}{4 \times 1,1 \times 10^6} = 618,40 \text{ kNm}$$

Valutare le condizioni

 $M_{\rm Ed} = 275 \, \rm kNm$, quindi:

$$\overline{\eta}_1 = \frac{275}{618,40} = 0,44 \le 1,0 \text{ OK}$$

Eq. 5.22

 $\overline{\eta}_1$ soddisfano entrambi le rispettive condizioni. Ora resta da controllare l'interazione.

$$\overline{\eta}_1 + \left(1 - \frac{M_{f,Rd}}{M_{pl,Rd}}\right) (2\overline{\eta}_3 - 1)^2 = 0.44 + \left(1 - \frac{513.86}{618.40}\right) ((2 \times 1.075) - 1)^2 = 0.664 < 1.0$$

Ne consegue che, alle condizioni date, la resistenza della trave è sufficiente nei confronti dello sforzo di taglio, della flessione, come pure nei confronti dell'interazione fra taglio e flessione.